Nuprl Lemma : cycle_wf2

[n:ℕ]. ∀[L:Combination(n;ℕn)].  (cycle(L) ∈ cyclic-map(ℕn))


Proof




Definitions occuring in Statement :  cyclic-map: cyclic-map(T) combination: Combination(n;T) cycle: cycle(L) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cyclic-map: cyclic-map(T) nat: combination: Combination(n;T) injection: A →⟶ B and: P ∧ Q uimplies: supposing a prop: all: x:A. B[x] no_repeats: no_repeats(T;l) so_lambda: λ2x.t[x] guard: {T} int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top so_apply: x[s] sq_stable: SqStable(P) squash: T uiff: uiff(P;Q) sq_type: SQType(T) surject: Surj(A;B;f) l_member: (x ∈ l) subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) cand: c∧ B
Lemmas referenced :  combination_wf int_seg_wf nat_wf cycle_wf cycle-injection inject_wf uall_wf isect_wf less_than_wf not_wf equal_wf select_wf nat_properties int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf length_wf squash_wf sq_stable__and sq_stable__uall sq_stable__not sq_stable__equal no_repeats_wf list_wf no_repeats_inject subtype_base_sq int_subtype_base injection-is-surjection decidable__lt intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma int_seg_subtype_nat false_wf set_subtype_base lelt_wf cycle-transitive fun_exp_wf all_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin natural_numberEquality setElimination rename hypothesisEquality because_Cache isect_memberEquality productElimination independent_isectElimination functionExtensionality applyEquality lambdaFormation lambdaEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination imageMemberEquality baseClosed imageElimination productEquality instantiate cumulativity applyLambdaEquality comment

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[L:Combination(n;\mBbbN{}n)].    (cycle(L)  \mmember{}  cyclic-map(\mBbbN{}n))



Date html generated: 2018_05_21-PM-08_25_59
Last ObjectModification: 2017_07_26-PM-05_54_19

Theory : general


Home Index