Nuprl Lemma : cycle_wf2
∀[n:ℕ]. ∀[L:Combination(n;ℕn)].  (cycle(L) ∈ cyclic-map(ℕn))
Proof
Definitions occuring in Statement : 
cyclic-map: cyclic-map(T)
, 
combination: Combination(n;T)
, 
cycle: cycle(L)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cyclic-map: cyclic-map(T)
, 
nat: ℕ
, 
combination: Combination(n;T)
, 
injection: A →⟶ B
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
no_repeats: no_repeats(T;l)
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
surject: Surj(A;B;f)
, 
l_member: (x ∈ l)
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
cand: A c∧ B
Lemmas referenced : 
combination_wf, 
int_seg_wf, 
nat_wf, 
cycle_wf, 
cycle-injection, 
inject_wf, 
uall_wf, 
isect_wf, 
less_than_wf, 
not_wf, 
equal_wf, 
select_wf, 
nat_properties, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
length_wf, 
squash_wf, 
sq_stable__and, 
sq_stable__uall, 
sq_stable__not, 
sq_stable__equal, 
no_repeats_wf, 
list_wf, 
no_repeats_inject, 
subtype_base_sq, 
int_subtype_base, 
injection-is-surjection, 
decidable__lt, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
int_seg_subtype_nat, 
false_wf, 
set_subtype_base, 
lelt_wf, 
cycle-transitive, 
fun_exp_wf, 
all_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
isect_memberEquality, 
productElimination, 
independent_isectElimination, 
functionExtensionality, 
applyEquality, 
lambdaFormation, 
lambdaEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productEquality, 
instantiate, 
cumulativity, 
applyLambdaEquality, 
comment
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[L:Combination(n;\mBbbN{}n)].    (cycle(L)  \mmember{}  cyclic-map(\mBbbN{}n))
Date html generated:
2018_05_21-PM-08_25_59
Last ObjectModification:
2017_07_26-PM-05_54_19
Theory : general
Home
Index