Nuprl Lemma : cycle_wf
∀[n:ℕ]. ∀[L:ℕn List]. (cycle(L) ∈ ℕn ⟶ ℕn)
Proof
Definitions occuring in Statement :
cycle: cycle(L)
,
list: T List
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
cycle: cycle(L)
,
nat: ℕ
,
all: ∀x:A. B[x]
,
or: P ∨ Q
,
let: let,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
top: Top
,
so_apply: x[s1;s2;s3]
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
cons: [a / b]
,
bfalse: ff
,
int_seg: {i..j-}
,
prop: ℙ
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
false: False
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
subtype_rel: A ⊆r B
,
guard: {T}
,
colength: colength(L)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
decidable: Dec(P)
,
nil: []
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
Lemmas referenced :
int_seg_wf,
list-cases,
null_nil_lemma,
list_ind_nil_lemma,
product_subtype_list,
null_cons_lemma,
list_ind_cons_lemma,
reduce_hd_cons_lemma,
list_wf,
nat_wf,
eq_int_wf,
bool_wf,
equal-wf-T-base,
assert_wf,
equal_wf,
bnot_wf,
not_wf,
uiff_transitivity,
eqtt_to_assert,
assert_of_eq_int,
iff_transitivity,
iff_weakening_uiff,
eqff_to_assert,
assert_of_bnot,
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
colength_wf_list,
less_than_transitivity1,
less_than_irreflexivity,
spread_cons_lemma,
intformeq_wf,
itermAdd_wf,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
decidable__le,
intformnot_wf,
int_formula_prop_not_lemma,
le_wf,
subtract_wf,
itermSubtract_wf,
int_term_value_subtract_lemma,
subtype_base_sq,
set_subtype_base,
int_subtype_base,
decidable__equal_int,
hd_wf,
cons_wf,
length_cons_ge_one,
subtype_rel_list,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
natural_numberEquality,
setElimination,
rename,
hypothesisEquality,
hypothesis,
dependent_functionElimination,
unionElimination,
sqequalRule,
isect_memberEquality,
voidElimination,
voidEquality,
promote_hyp,
hypothesis_subsumption,
productElimination,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
because_Cache,
lambdaEquality,
baseClosed,
intEquality,
lambdaFormation,
equalityElimination,
independent_functionElimination,
independent_isectElimination,
independent_pairFormation,
impliesFunctionality,
intWeakElimination,
dependent_pairFormation,
int_eqEquality,
computeAll,
applyEquality,
applyLambdaEquality,
dependent_set_memberEquality,
addEquality,
instantiate,
cumulativity,
imageElimination
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[L:\mBbbN{}n List]. (cycle(L) \mmember{} \mBbbN{}n {}\mrightarrow{} \mBbbN{}n)
Date html generated:
2017_04_17-AM-08_16_59
Last ObjectModification:
2017_02_27-PM-04_40_37
Theory : list_1
Home
Index