Nuprl Lemma : cycle-transitive1

[n:ℕ]. ∀[L:ℕList].
  ∀[a,b:ℕ].  ((cycle(L)^b L[a]) L[b] ∈ ℕn) supposing ((a ≤ b) and b < ||L||) supposing no_repeats(ℕn;L)


Proof




Definitions occuring in Statement :  cycle: cycle(L) no_repeats: no_repeats(T;l) select: L[n] length: ||as|| list: List fun_exp: f^n int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B apply: a subtract: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} sq_type: SQType(T) less_than: a < b squash: T le: A ≤ B less_than': less_than'(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  cand: c∧ B bfalse: ff bnot: ¬bb assert: b subtract: m compose: g nequal: a ≠ b ∈  subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  subtract_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf le_wf subtype_base_sq nat_wf set_subtype_base int_subtype_base decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__lt length_wf int_seg_wf intformless_wf int_formula_prop_less_lemma equal_wf less_than_wf no_repeats_wf list_wf ge_wf fun_exp_unroll false_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int select_wf squash_wf add-zero subtract-is-int-iff eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int cycle_wf fun_exp_wf int_seg_properties lelt_wf equal-wf-base assert_wf bnot_wf not_wf true_wf apply-cycle-member iff_weakening_equal add-associates add-swap add-commutes zero-add uiff_transitivity iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality dependent_functionElimination unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll lambdaFormation instantiate cumulativity equalityTransitivity equalitySymmetry applyLambdaEquality addEquality independent_functionElimination imageElimination productElimination axiomEquality intWeakElimination equalityElimination applyEquality productEquality universeEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed imageMemberEquality minusEquality impliesFunctionality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[L:\mBbbN{}n  List].
    \mforall{}[a,b:\mBbbN{}].    ((cycle(L)\^{}b  -  a  L[a])  =  L[b])  supposing  ((a  \mleq{}  b)  and  b  <  ||L||) 
    supposing  no\_repeats(\mBbbN{}n;L)



Date html generated: 2017_04_17-AM-08_18_48
Last ObjectModification: 2017_02_27-PM-04_44_29

Theory : list_1


Home Index