Nuprl Lemma : no_repeats-sublist
∀[T:Type]. ∀[L,L':T List].  (no_repeats(T;L')) supposing (L' ⊆ L and no_repeats(T;L))
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
no_repeats: no_repeats(T;l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
all: ∀x:A. B[x]
Lemmas referenced : 
equal_wf, 
l_before_wf, 
sublist_wf, 
uall_wf, 
isect_wf, 
not_wf, 
iff_weakening_uiff, 
no_repeats_wf, 
no_repeats_iff, 
no_repeats_witness, 
list_wf, 
l_before_sublist
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
independent_isectElimination, 
productElimination, 
cumulativity, 
isectEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L,L':T  List].    (no\_repeats(T;L'))  supposing  (L'  \msubseteq{}  L  and  no\_repeats(T;L))
Date html generated:
2019_06_20-PM-01_27_21
Last ObjectModification:
2018_08_24-PM-11_25_48
Theory : list_1
Home
Index