Nuprl Lemma : sublist_append2

[T:Type]. ∀L1,L2:T List.  L2 ⊆ L1 L2


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 append: as bs list: List uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T top: Top uimplies: supposing a append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] implies:  Q
Lemmas referenced :  list_wf nil_wf nil-sublist sublist_weakening list_ind_nil_lemma sublist_append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeEquality isect_memberEquality voidElimination voidEquality because_Cache dependent_functionElimination independent_isectElimination sqequalRule independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    L2  \msubseteq{}  L1  @  L2



Date html generated: 2016_05_14-AM-07_44_28
Last ObjectModification: 2015_12_26-PM-02_52_45

Theory : list_1


Home Index