Nuprl Lemma : sublist_append2
∀[T:Type]. ∀L1,L2:T List.  L2 ⊆ L1 @ L2
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uimplies: b supposing a
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
implies: P 
⇒ Q
Lemmas referenced : 
list_wf, 
nil_wf, 
nil-sublist, 
sublist_weakening, 
list_ind_nil_lemma, 
sublist_append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
dependent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    L2  \msubseteq{}  L1  @  L2
Date html generated:
2016_05_14-AM-07_44_28
Last ObjectModification:
2015_12_26-PM-02_52_45
Theory : list_1
Home
Index