Nuprl Lemma : sublist_append2
∀[T:Type]. ∀L1,L2:T List. L2 ⊆ L1 @ L2
Proof
Definitions occuring in Statement :
sublist: L1 ⊆ L2
,
append: as @ bs
,
list: T List
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
top: Top
,
uimplies: b supposing a
,
append: as @ bs
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
implies: P
⇒ Q
Lemmas referenced :
list_wf,
nil_wf,
nil-sublist,
sublist_weakening,
list_ind_nil_lemma,
sublist_append
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
universeEquality,
isect_memberEquality,
voidElimination,
voidEquality,
because_Cache,
dependent_functionElimination,
independent_isectElimination,
sqequalRule,
independent_functionElimination
Latex:
\mforall{}[T:Type]. \mforall{}L1,L2:T List. L2 \msubseteq{} L1 @ L2
Date html generated:
2016_05_14-AM-07_44_28
Last ObjectModification:
2015_12_26-PM-02_52_45
Theory : list_1
Home
Index