Nuprl Lemma : sublist_append

[T:Type]. ∀L1,L2,L1',L2':T List.  (L1 ⊆ L1'  L2 ⊆ L2'  L1 L2 ⊆ L1' L2')


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 append: as bs list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q sublist: L1 ⊆ L2 exists: x:A. B[x] and: P ∧ Q member: t ∈ T prop: int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  bfalse: ff guard: {T} subtype_rel: A ⊆B lelt: i ≤ j < k squash: T less_than: a < b ge: i ≥  false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A le: A ≤ B or: P ∨ Q decidable: Dec(P) top: Top increasing: increasing(f;k) cand: c∧ B sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q nat: true: True subtract: m
Lemmas referenced :  sublist_wf list_wf istype-universe bnot_wf le_wf le_int_wf less_than_wf assert_wf equal-wf-T-base bool_wf length_wf lt_int_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf lelt_wf int_seg_wf int_formula_prop_eq_lemma intformeq_wf add-member-int_seg2 int_term_value_add_lemma int_formula_prop_less_lemma itermAdd_wf intformless_wf decidable__lt top_wf subtype_rel_list length_append append_wf non_neg_length int_formula_prop_wf int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le int_seg_properties length-append subtract_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot iff_weakening_uiff istype-less_than istype-int istype-le length_wf_nat nat_properties select_append_front select_wf iff_weakening_equal subtract-is-int-iff add-is-int-iff false_wf general_arith_equation1 minus-one-mul add-associates add-mul-special zero-mul add-zero itermMultiply_wf int_term_value_mul_lemma squash_wf true_wf select_append_back subtype_rel_self increasing_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution productElimination thin dependent_pairFormation_alt universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis inhabitedIsType instantiate universeEquality lambdaEquality because_Cache baseClosed equalitySymmetry equalityTransitivity rename setElimination lambdaFormation unionElimination equalityElimination independent_functionElimination independent_isectElimination sqequalRule dependent_functionElimination independent_pairFormation dependent_set_memberEquality cumulativity natural_numberEquality functionExtensionality applyEquality imageElimination applyLambdaEquality intEquality int_eqEquality dependent_pairFormation approximateComputation addEquality voidEquality voidElimination isect_memberEquality Error :memTop,  equalityIstype promote_hyp dependent_set_memberEquality_alt lambdaEquality_alt productIsType imageMemberEquality pointwiseFunctionality baseApply closedConclusion multiplyEquality minusEquality functionIsType

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2,L1',L2':T  List.    (L1  \msubseteq{}  L1'  {}\mRightarrow{}  L2  \msubseteq{}  L2'  {}\mRightarrow{}  L1  @  L2  \msubseteq{}  L1'  @  L2')



Date html generated: 2020_05_19-PM-09_42_06
Last ObjectModification: 2019_12_31-PM-00_14_53

Theory : list_1


Home Index