Step
*
1
of Lemma
cyclic-map-transitive
1. n : ℕ
2. f : ℕn ⟶ ℕn
3. Inj(ℕn;ℕn;f)
4. ∀x,y:ℕn. ∃n@0:ℕ. ((f^n@0 x) = y ∈ ℕn)
5. x : ℕn
6. y : ℕn
7. k : ℕ
8. (f^k x) = y ∈ ℕn
⊢ ∃m:ℕn. ((f^m x) = y ∈ ℕn)
BY
{ xxxAssert ⌜∃m:ℕn + 1. (0 < m ∧ ((f^m x) = x ∈ ℕn))⌝⋅xxx }
1
.....assertion.....
1. n : ℕ
2. f : ℕn ⟶ ℕn
3. Inj(ℕn;ℕn;f)
4. ∀x,y:ℕn. ∃n@0:ℕ. ((f^n@0 x) = y ∈ ℕn)
5. x : ℕn
6. y : ℕn
7. k : ℕ
8. (f^k x) = y ∈ ℕn
⊢ ∃m:ℕn + 1. (0 < m ∧ ((f^m x) = x ∈ ℕn))
2
1. n : ℕ
2. f : ℕn ⟶ ℕn
3. Inj(ℕn;ℕn;f)
4. ∀x,y:ℕn. ∃n@0:ℕ. ((f^n@0 x) = y ∈ ℕn)
5. x : ℕn
6. y : ℕn
7. k : ℕ
8. (f^k x) = y ∈ ℕn
9. ∃m:ℕn + 1. (0 < m ∧ ((f^m x) = x ∈ ℕn))
⊢ ∃m:ℕn. ((f^m x) = y ∈ ℕn)
Latex:
Latex:
1. n : \mBbbN{}
2. f : \mBbbN{}n {}\mrightarrow{} \mBbbN{}n
3. Inj(\mBbbN{}n;\mBbbN{}n;f)
4. \mforall{}x,y:\mBbbN{}n. \mexists{}n@0:\mBbbN{}. ((f\^{}n@0 x) = y)
5. x : \mBbbN{}n
6. y : \mBbbN{}n
7. k : \mBbbN{}
8. (f\^{}k x) = y
\mvdash{} \mexists{}m:\mBbbN{}n. ((f\^{}m x) = y)
By
Latex:
xxxAssert \mkleeneopen{}\mexists{}m:\mBbbN{}n + 1. (0 < m \mwedge{} ((f\^{}m x) = x))\mkleeneclose{}\mcdot{}xxx
Home
Index