Step
*
2
1
of Lemma
divides-combinations
1. n : ℤ
2. [%1] : 0 < n
3. ∀m:ℤ. ∀k:ℕ.  (k | C(n - 1;m)) supposing ((k ≤ m) and m - n - 1 < k)
4. m : ℤ
5. k : ℕ
6. m - n < k
7. k ≤ m
8. ¬(n = 0 ∈ ℤ)
9. ¬(k = m ∈ ℤ)
10. c : ℤ
11. C(n - 1;m - 1) = (k * c) ∈ ℤ
⊢ k | (m * C(n - 1;m - 1))
BY
{ (With ⌜m * c⌝ (D 0)⋅ THEN Auto THEN HypSubst' (-1) 0 THEN Auto) }
Latex:
Latex:
1.  n  :  \mBbbZ{}
2.  [\%1]  :  0  <  n
3.  \mforall{}m:\mBbbZ{}.  \mforall{}k:\mBbbN{}.    (k  |  C(n  -  1;m))  supposing  ((k  \mleq{}  m)  and  m  -  n  -  1  <  k)
4.  m  :  \mBbbZ{}
5.  k  :  \mBbbN{}
6.  m  -  n  <  k
7.  k  \mleq{}  m
8.  \mneg{}(n  =  0)
9.  \mneg{}(k  =  m)
10.  c  :  \mBbbZ{}
11.  C(n  -  1;m  -  1)  =  (k  *  c)
\mvdash{}  k  |  (m  *  C(n  -  1;m  -  1))
By
Latex:
(With  \mkleeneopen{}m  *  c\mkleeneclose{}  (D  0)\mcdot{}  THEN  Auto  THEN  HypSubst'  (-1)  0  THEN  Auto)
Home
Index