Nuprl Lemma : divides-combinations
∀n:ℕ. ∀m:ℤ. ∀k:ℕ.  (k | C(n;m)) supposing ((k ≤ m) and m - n < k)
Proof
Definitions occuring in Statement : 
combinations: C(n;m)
, 
divides: b | a
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
subtract: n - m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
divides: b | a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
member-less_than, 
subtract_wf, 
less_than'_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
le_wf, 
less_than_wf, 
nat_wf, 
combinations-step, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
eq_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
decidable__equal_int, 
equal_wf, 
all_wf, 
isect_wf, 
divides_wf, 
combinations_wf_int, 
set_wf, 
primrec-wf2, 
subtype_base_sq, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
equal-wf-base-T, 
decidable__lt, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
mul-swap
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
isect_memberFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
independent_isectElimination, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
unionElimination, 
equalityElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
independent_functionElimination, 
impliesFunctionality, 
promote_hyp, 
instantiate, 
cumulativity, 
multiplyEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}m:\mBbbZ{}.  \mforall{}k:\mBbbN{}.    (k  |  C(n;m))  supposing  ((k  \mleq{}  m)  and  m  -  n  <  k)
Date html generated:
2018_05_21-PM-08_09_59
Last ObjectModification:
2017_07_26-PM-05_45_35
Theory : general
Home
Index