Nuprl Lemma : divides-combinations

n:ℕ. ∀m:ℤ. ∀k:ℕ.  (k C(n;m)) supposing ((k ≤ m) and n < k)


Proof




Definitions occuring in Statement :  combinations: C(n;m) divides: a nat: less_than: a < b uimplies: supposing a le: A ≤ B all: x:A. B[x] subtract: m int:
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False prop: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] divides: a sq_type: SQType(T) guard: {T} squash: T true: True
Lemmas referenced :  member-less_than subtract_wf less_than'_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermVar_wf intformless_wf itermSubtract_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf le_wf less_than_wf nat_wf combinations-step decidable__le intformnot_wf int_formula_prop_not_lemma eq_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot decidable__equal_int equal_wf all_wf isect_wf divides_wf combinations_wf_int set_wf primrec-wf2 subtype_base_sq itermMultiply_wf int_term_value_mul_lemma equal-wf-base-T decidable__lt squash_wf true_wf iff_weakening_equal mul-swap
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin isect_memberFormation introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality natural_numberEquality hypothesis setElimination rename independent_isectElimination sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination voidElimination because_Cache axiomEquality equalityTransitivity equalitySymmetry dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll dependent_set_memberEquality unionElimination equalityElimination baseApply closedConclusion baseClosed applyEquality independent_functionElimination impliesFunctionality promote_hyp instantiate cumulativity multiplyEquality imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}m:\mBbbZ{}.  \mforall{}k:\mBbbN{}.    (k  |  C(n;m))  supposing  ((k  \mleq{}  m)  and  m  -  n  <  k)



Date html generated: 2018_05_21-PM-08_09_59
Last ObjectModification: 2017_07_26-PM-05_45_35

Theory : general


Home Index