Nuprl Lemma : equipollent-nat-sequences

ℕ k:ℕ × (ℕk ⟶ ℕ)


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n
Definitions unfolded in proof :  equipollent: B exists: x:A. B[x] member: t ∈ T all: x:A. B[x] prop: uall: [x:A]. B[x] nat:
Lemmas referenced :  coded-seq_wf nat_wf code-seq-bijection biject_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_pairFormation lambdaEquality cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination productEquality functionEquality natural_numberEquality setElimination rename

Latex:
\mBbbN{}  \msim{}  k:\mBbbN{}  \mtimes{}  (\mBbbN{}k  {}\mrightarrow{}  \mBbbN{})



Date html generated: 2016_05_15-PM-05_25_21
Last ObjectModification: 2015_12_27-PM-02_12_28

Theory : general


Home Index