Nuprl Lemma : equipollent-nat-sequences
ℕ ~ k:ℕ × (ℕk ⟶ ℕ)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
Lemmas referenced : 
coded-seq_wf, 
nat_wf, 
code-seq-bijection, 
biject_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_pairFormation, 
lambdaEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
productEquality, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename
Latex:
\mBbbN{}  \msim{}  k:\mBbbN{}  \mtimes{}  (\mBbbN{}k  {}\mrightarrow{}  \mBbbN{})
Date html generated:
2016_05_15-PM-05_25_21
Last ObjectModification:
2015_12_27-PM-02_12_28
Theory : general
Home
Index