Nuprl Lemma : example1-ext
∀[A,B,C:Type].  (((A ⇒ B) ⇒ A) ⇒ (B ⇒ C) ⇒ (A ⇒ B) ⇒ (¬¬C))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T, 
example1, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle
Lemmas referenced : 
example1, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[A,B,C:Type].    (((A  {}\mRightarrow{}  B)  {}\mRightarrow{}  A)  {}\mRightarrow{}  (B  {}\mRightarrow{}  C)  {}\mRightarrow{}  (A  {}\mRightarrow{}  B)  {}\mRightarrow{}  (\mneg{}\mneg{}C))
Date html generated:
2018_05_21-PM-08_54_56
Last ObjectModification:
2018_05_19-PM-05_07_18
Theory : general
Home
Index