Nuprl Lemma : example1
∀[A,B,C:Type].  (((A 
⇒ B) 
⇒ A) 
⇒ (B 
⇒ C) 
⇒ (A 
⇒ B) 
⇒ (¬¬C))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
not: ¬A
, 
or: P ∨ Q
, 
false: False
Lemmas referenced : 
false_wf, 
or_wf, 
not_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
because_Cache, 
universeEquality, 
lambdaFormation, 
functionEquality, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
independent_functionElimination, 
unionElimination, 
introduction, 
lambdaEquality, 
voidElimination
Latex:
\mforall{}[A,B,C:Type].    (((A  {}\mRightarrow{}  B)  {}\mRightarrow{}  A)  {}\mRightarrow{}  (B  {}\mRightarrow{}  C)  {}\mRightarrow{}  (A  {}\mRightarrow{}  B)  {}\mRightarrow{}  (\mneg{}\mneg{}C))
Date html generated:
2016_05_15-PM-07_19_58
Last ObjectModification:
2015_12_27-AM-11_27_17
Theory : general
Home
Index