Nuprl Lemma : example1

[A,B,C:Type].  (((A  B)  A)  (B  C)  (A  B)  (¬¬C))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] not: ¬A implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: not: ¬A or: P ∨ Q false: False
Lemmas referenced :  false_wf or_wf not_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation because_Cache universeEquality lambdaFormation functionEquality hypothesisEquality cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin sqequalRule independent_functionElimination unionElimination introduction lambdaEquality voidElimination

Latex:
\mforall{}[A,B,C:Type].    (((A  {}\mRightarrow{}  B)  {}\mRightarrow{}  A)  {}\mRightarrow{}  (B  {}\mRightarrow{}  C)  {}\mRightarrow{}  (A  {}\mRightarrow{}  B)  {}\mRightarrow{}  (\mneg{}\mneg{}C))



Date html generated: 2016_05_15-PM-07_19_58
Last ObjectModification: 2015_12_27-AM-11_27_17

Theory : general


Home Index