Nuprl Lemma : example3

[A,B,C:Type].  ((A  (B ∨ (A  C)))   (B ∨ C))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] implies:  Q or: P ∨ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q or: P ∨ Q member: t ∈ T guard: {T} prop:
Lemmas referenced :  or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution independent_functionElimination thin hypothesis unionElimination inlFormation hypothesisEquality sqequalRule cut inrFormation functionEquality lemma_by_obid isectElimination universeEquality

Latex:
\mforall{}[A,B,C:Type].    ((A  {}\mRightarrow{}  (B  \mvee{}  (A  {}\mRightarrow{}  C)))  {}\mRightarrow{}  A  {}\mRightarrow{}  (B  \mvee{}  C))



Date html generated: 2016_05_15-PM-07_21_43
Last ObjectModification: 2015_12_27-AM-11_26_19

Theory : general


Home Index