Nuprl Lemma : example3
∀[A,B,C:Type].  ((A 
⇒ (B ∨ (A 
⇒ C))) 
⇒ A 
⇒ (B ∨ C))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
member: t ∈ T
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
hypothesis, 
unionElimination, 
inlFormation, 
hypothesisEquality, 
sqequalRule, 
cut, 
inrFormation, 
functionEquality, 
lemma_by_obid, 
isectElimination, 
universeEquality
Latex:
\mforall{}[A,B,C:Type].    ((A  {}\mRightarrow{}  (B  \mvee{}  (A  {}\mRightarrow{}  C)))  {}\mRightarrow{}  A  {}\mRightarrow{}  (B  \mvee{}  C))
Date html generated:
2016_05_15-PM-07_21_43
Last ObjectModification:
2015_12_27-AM-11_26_19
Theory : general
Home
Index