Step
*
1
2
1
1
1
of Lemma
factorit_wf
.....set predicate.....
1. d : ℕ
2. ∀d:ℕd
∀[x:ℕ+]. ∀[b:ℕ].
(x - b * b < d
⇒ (2 ≤ b)
⇒ (∀[tried:{L:{p:ℕ| prime(p) ∧ p < b} List| ∀p:{p:ℕ| prime(p)} . (p < b
⇒ ((p ∈ L) ∧ (¬(p | x))))} ].
∀[facs:{p:ℕ| prime(p)} List].
(factorit(x;b;tried;facs) ∈ {L:{p:ℕ| prime(p)} List|
reduce(λp,q. (p * q);1;L) = (x * reduce(λp,q. (p * q);1;facs)) ∈ ℤ} )))
3. x : ℕ+
4. b : ℕ
5. x - b * b < d
6. 2 ≤ b
7. tried : {p:ℕ| prime(p) ∧ p < b} List
8. ∀p:{p:ℕ| prime(p)} . (p < b
⇒ ((p ∈ tried) ∧ (¬(p | x))))
9. facs : {p:ℕ| prime(p)} List
10. (b * b) ≤ x
11. ∀p:{p:ℕ| prime(p)} . p ≠ 0
12. (∃p∈tried. (b rem p) = 0 ∈ ℤ)
13. ∀[tried:{L:{p:ℕ| prime(p) ∧ p < b + 1} List| ∀p:{p:ℕ| prime(p)} . (p < b + 1
⇒ ((p ∈ L) ∧ (¬(p | x))))} ].
∀[facs:{p:ℕ| prime(p)} List].
(factorit(x;b + 1;tried;facs) ∈ {L:{p:ℕ| prime(p)} List|
reduce(λp,q. (p * q);1;L) = (x * reduce(λp,q. (p * q);1;facs)) ∈ ℤ} )
⊢ ∀p:{p:ℕ| prime(p)} . (p < b + 1
⇒ ((p ∈ tried) ∧ (¬(p | x))))
BY
{ (RepeatFor 2 ((D 0 THENA Auto)) THEN (Decide p = b ∈ ℤ THENA Auto)) }
1
1. d : ℕ
2. ∀d:ℕd
∀[x:ℕ+]. ∀[b:ℕ].
(x - b * b < d
⇒ (2 ≤ b)
⇒ (∀[tried:{L:{p:ℕ| prime(p) ∧ p < b} List| ∀p:{p:ℕ| prime(p)} . (p < b
⇒ ((p ∈ L) ∧ (¬(p | x))))} ].
∀[facs:{p:ℕ| prime(p)} List].
(factorit(x;b;tried;facs) ∈ {L:{p:ℕ| prime(p)} List|
reduce(λp,q. (p * q);1;L) = (x * reduce(λp,q. (p * q);1;facs)) ∈ ℤ} )))
3. x : ℕ+
4. b : ℕ
5. x - b * b < d
6. 2 ≤ b
7. tried : {p:ℕ| prime(p) ∧ p < b} List
8. ∀p:{p:ℕ| prime(p)} . (p < b
⇒ ((p ∈ tried) ∧ (¬(p | x))))
9. facs : {p:ℕ| prime(p)} List
10. (b * b) ≤ x
11. ∀p:{p:ℕ| prime(p)} . p ≠ 0
12. (∃p∈tried. (b rem p) = 0 ∈ ℤ)
13. ∀[tried:{L:{p:ℕ| prime(p) ∧ p < b + 1} List| ∀p:{p:ℕ| prime(p)} . (p < b + 1
⇒ ((p ∈ L) ∧ (¬(p | x))))} ].
∀[facs:{p:ℕ| prime(p)} List].
(factorit(x;b + 1;tried;facs) ∈ {L:{p:ℕ| prime(p)} List|
reduce(λp,q. (p * q);1;L) = (x * reduce(λp,q. (p * q);1;facs)) ∈ ℤ} )
14. p : {p:ℕ| prime(p)}
15. p < b + 1
16. p = b ∈ ℤ
⊢ (p ∈ tried) ∧ (¬(p | x))
2
1. d : ℕ
2. ∀d:ℕd
∀[x:ℕ+]. ∀[b:ℕ].
(x - b * b < d
⇒ (2 ≤ b)
⇒ (∀[tried:{L:{p:ℕ| prime(p) ∧ p < b} List| ∀p:{p:ℕ| prime(p)} . (p < b
⇒ ((p ∈ L) ∧ (¬(p | x))))} ].
∀[facs:{p:ℕ| prime(p)} List].
(factorit(x;b;tried;facs) ∈ {L:{p:ℕ| prime(p)} List|
reduce(λp,q. (p * q);1;L) = (x * reduce(λp,q. (p * q);1;facs)) ∈ ℤ} )))
3. x : ℕ+
4. b : ℕ
5. x - b * b < d
6. 2 ≤ b
7. tried : {p:ℕ| prime(p) ∧ p < b} List
8. ∀p:{p:ℕ| prime(p)} . (p < b
⇒ ((p ∈ tried) ∧ (¬(p | x))))
9. facs : {p:ℕ| prime(p)} List
10. (b * b) ≤ x
11. ∀p:{p:ℕ| prime(p)} . p ≠ 0
12. (∃p∈tried. (b rem p) = 0 ∈ ℤ)
13. ∀[tried:{L:{p:ℕ| prime(p) ∧ p < b + 1} List| ∀p:{p:ℕ| prime(p)} . (p < b + 1
⇒ ((p ∈ L) ∧ (¬(p | x))))} ].
∀[facs:{p:ℕ| prime(p)} List].
(factorit(x;b + 1;tried;facs) ∈ {L:{p:ℕ| prime(p)} List|
reduce(λp,q. (p * q);1;L) = (x * reduce(λp,q. (p * q);1;facs)) ∈ ℤ} )
14. p : {p:ℕ| prime(p)}
15. p < b + 1
16. ¬(p = b ∈ ℤ)
⊢ (p ∈ tried) ∧ (¬(p | x))
Latex:
Latex:
.....set predicate.....
1. d : \mBbbN{}
2. \mforall{}d:\mBbbN{}d
\mforall{}[x:\mBbbN{}\msupplus{}]. \mforall{}[b:\mBbbN{}].
(x - b * b < d
{}\mRightarrow{} (2 \mleq{} b)
{}\mRightarrow{} (\mforall{}[tried:\{L:\{p:\mBbbN{}| prime(p) \mwedge{} p < b\} List|
\mforall{}p:\{p:\mBbbN{}| prime(p)\} . (p < b {}\mRightarrow{} ((p \mmember{} L) \mwedge{} (\mneg{}(p | x))))\} ].
\mforall{}[facs:\{p:\mBbbN{}| prime(p)\} List].
(factorit(x;b;tried;facs) \mmember{} \{L:\{p:\mBbbN{}| prime(p)\} List|
reduce(\mlambda{}p,q. (p * q);1;L) = (x * reduce(\mlambda{}p,q. (p * q);1;fa\000Ccs))\} )))
3. x : \mBbbN{}\msupplus{}
4. b : \mBbbN{}
5. x - b * b < d
6. 2 \mleq{} b
7. tried : \{p:\mBbbN{}| prime(p) \mwedge{} p < b\} List
8. \mforall{}p:\{p:\mBbbN{}| prime(p)\} . (p < b {}\mRightarrow{} ((p \mmember{} tried) \mwedge{} (\mneg{}(p | x))))
9. facs : \{p:\mBbbN{}| prime(p)\} List
10. (b * b) \mleq{} x
11. \mforall{}p:\{p:\mBbbN{}| prime(p)\} . p \mneq{} 0
12. (\mexists{}p\mmember{}tried. (b rem p) = 0)
13. \mforall{}[tried:\{L:\{p:\mBbbN{}| prime(p) \mwedge{} p < b + 1\} List|
\mforall{}p:\{p:\mBbbN{}| prime(p)\} . (p < b + 1 {}\mRightarrow{} ((p \mmember{} L) \mwedge{} (\mneg{}(p | x))))\} ].
\mforall{}[facs:\{p:\mBbbN{}| prime(p)\} List].
(factorit(x;b + 1;tried;facs) \mmember{} \{L:\{p:\mBbbN{}| prime(p)\} List|
reduce(\mlambda{}p,q. (p * q);1;L) = (x * reduce(\mlambda{}p,q. (p * q);1;facs)\000C)\} )
\mvdash{} \mforall{}p:\{p:\mBbbN{}| prime(p)\} . (p < b + 1 {}\mRightarrow{} ((p \mmember{} tried) \mwedge{} (\mneg{}(p | x))))
By
Latex:
(RepeatFor 2 ((D 0 THENA Auto)) THEN (Decide p = b THENA Auto))
Home
Index