Step
*
1
2
1
1
1
2
of Lemma
factorit_wf
1. d : ℕ
2. ∀d:ℕd
     ∀[x:ℕ+]. ∀[b:ℕ].
       (x - b * b < d
       
⇒ (2 ≤ b)
       
⇒ (∀[tried:{L:{p:ℕ| prime(p) ∧ p < b}  List| ∀p:{p:ℕ| prime(p)} . (p < b 
⇒ ((p ∈ L) ∧ (¬(p | x))))} ].
           ∀[facs:{p:ℕ| prime(p)}  List].
             (factorit(x;b;tried;facs) ∈ {L:{p:ℕ| prime(p)}  List| 
                                          reduce(λp,q. (p * q);1;L) = (x * reduce(λp,q. (p * q);1;facs)) ∈ ℤ} )))
3. x : ℕ+
4. b : ℕ
5. x - b * b < d
6. 2 ≤ b
7. tried : {p:ℕ| prime(p) ∧ p < b}  List
8. ∀p:{p:ℕ| prime(p)} . (p < b 
⇒ ((p ∈ tried) ∧ (¬(p | x))))
9. facs : {p:ℕ| prime(p)}  List
10. (b * b) ≤ x
11. ∀p:{p:ℕ| prime(p)} . p ≠ 0
12. (∃p∈tried. (b rem p) = 0 ∈ ℤ)
13. ∀[tried:{L:{p:ℕ| prime(p) ∧ p < b + 1}  List| ∀p:{p:ℕ| prime(p)} . (p < b + 1 
⇒ ((p ∈ L) ∧ (¬(p | x))))} ].
    ∀[facs:{p:ℕ| prime(p)}  List].
      (factorit(x;b + 1;tried;facs) ∈ {L:{p:ℕ| prime(p)}  List| 
                                       reduce(λp,q. (p * q);1;L) = (x * reduce(λp,q. (p * q);1;facs)) ∈ ℤ} )
14. p : {p:ℕ| prime(p)} 
15. p < b + 1
16. ¬(p = b ∈ ℤ)
⊢ (p ∈ tried) ∧ (¬(p | x))
BY
{ (Auto THEN BackThruSomeHyp THEN Auto) }
Latex:
Latex:
1.  d  :  \mBbbN{}
2.  \mforall{}d:\mBbbN{}d
          \mforall{}[x:\mBbbN{}\msupplus{}].  \mforall{}[b:\mBbbN{}].
              (x  -  b  *  b  <  d
              {}\mRightarrow{}  (2  \mleq{}  b)
              {}\mRightarrow{}  (\mforall{}[tried:\{L:\{p:\mBbbN{}|  prime(p)  \mwedge{}  p  <  b\}    List| 
                                        \mforall{}p:\{p:\mBbbN{}|  prime(p)\}  .  (p  <  b  {}\mRightarrow{}  ((p  \mmember{}  L)  \mwedge{}  (\mneg{}(p  |  x))))\}  ].
                      \mforall{}[facs:\{p:\mBbbN{}|  prime(p)\}    List].
                          (factorit(x;b;tried;facs)  \mmember{}  \{L:\{p:\mBbbN{}|  prime(p)\}    List| 
                                                                                    reduce(\mlambda{}p,q.  (p  *  q);1;L)  =  (x  *  reduce(\mlambda{}p,q.  (p  *  q);1;fa\000Ccs))\}  )))
3.  x  :  \mBbbN{}\msupplus{}
4.  b  :  \mBbbN{}
5.  x  -  b  *  b  <  d
6.  2  \mleq{}  b
7.  tried  :  \{p:\mBbbN{}|  prime(p)  \mwedge{}  p  <  b\}    List
8.  \mforall{}p:\{p:\mBbbN{}|  prime(p)\}  .  (p  <  b  {}\mRightarrow{}  ((p  \mmember{}  tried)  \mwedge{}  (\mneg{}(p  |  x))))
9.  facs  :  \{p:\mBbbN{}|  prime(p)\}    List
10.  (b  *  b)  \mleq{}  x
11.  \mforall{}p:\{p:\mBbbN{}|  prime(p)\}  .  p  \mneq{}  0
12.  (\mexists{}p\mmember{}tried.  (b  rem  p)  =  0)
13.  \mforall{}[tried:\{L:\{p:\mBbbN{}|  prime(p)  \mwedge{}  p  <  b  +  1\}    List| 
                          \mforall{}p:\{p:\mBbbN{}|  prime(p)\}  .  (p  <  b  +  1  {}\mRightarrow{}  ((p  \mmember{}  L)  \mwedge{}  (\mneg{}(p  |  x))))\}  ].
        \mforall{}[facs:\{p:\mBbbN{}|  prime(p)\}    List].
            (factorit(x;b  +  1;tried;facs)  \mmember{}  \{L:\{p:\mBbbN{}|  prime(p)\}    List| 
                                                                              reduce(\mlambda{}p,q.  (p  *  q);1;L)  =  (x  *  reduce(\mlambda{}p,q.  (p  *  q);1;facs)\000C)\}  )
14.  p  :  \{p:\mBbbN{}|  prime(p)\} 
15.  p  <  b  +  1
16.  \mneg{}(p  =  b)
\mvdash{}  (p  \mmember{}  tried)  \mwedge{}  (\mneg{}(p  |  x))
By
Latex:
(Auto  THEN  BackThruSomeHyp  THEN  Auto)
Home
Index