Nuprl Lemma : formula_ind_wf_simple
∀[A:Type]. ∀[v:formula()]. ∀[var:name:Atom ⟶ A]. ∀[not:sub:formula() ⟶ A ⟶ A]. ∀[and,or,imp:left:formula()
                                                                                               ⟶ right:formula()
                                                                                               ⟶ A
                                                                                               ⟶ A
                                                                                               ⟶ A].
  (formula_ind(v;
               pvar(name)
⇒ var[name];
               pnot(sub)
⇒ rec1.not[sub;rec1];
               pand(left,right)
⇒ rec2,rec3.and[left;right;rec2;rec3];
               por(left,right)
⇒ rec4,rec5.or[left;right;rec4;rec5];
               pimp(left,right)
⇒ rec6,rec7.imp[left;right;rec6;rec7])  ∈ A)
Proof
Definitions occuring in Statement : 
formula_ind: formula_ind, 
formula: formula()
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2;s3;s4]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
formula_ind_wf, 
true_wf, 
formula_wf, 
istype-true, 
subtype_rel_dep_function, 
istype-atom, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
universeIsType, 
functionExtensionality, 
applyEquality, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
closedConclusion, 
atomEquality, 
setEquality, 
setIsType, 
independent_isectElimination, 
setElimination, 
rename, 
lambdaFormation_alt, 
because_Cache, 
functionEquality, 
inhabitedIsType, 
applyLambdaEquality, 
functionIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[v:formula()].  \mforall{}[var:name:Atom  {}\mrightarrow{}  A].  \mforall{}[not:sub:formula()  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
\mforall{}[and,or,imp:left:formula()  {}\mrightarrow{}  right:formula()  {}\mrightarrow{}  A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (formula\_ind(v;
                              pvar(name){}\mRightarrow{}  var[name];
                              pnot(sub){}\mRightarrow{}  rec1.not[sub;rec1];
                              pand(left,right){}\mRightarrow{}  rec2,rec3.and[left;right;rec2;rec3];
                              por(left,right){}\mRightarrow{}  rec4,rec5.or[left;right;rec4;rec5];
                              pimp(left,right){}\mRightarrow{}  rec6,rec7.imp[left;right;rec6;rec7])    \mmember{}  A)
Date html generated:
2020_05_20-AM-08_18_53
Last ObjectModification:
2020_01_24-PM-00_51_06
Theory : general
Home
Index