Nuprl Lemma : formula_ind_wf_simple

[A:Type]. ∀[v:formula()]. ∀[var:name:Atom ⟶ A]. ∀[not:sub:formula() ⟶ A ⟶ A]. ∀[and,or,imp:left:formula()
                                                                                               ⟶ right:formula()
                                                                                               ⟶ A
                                                                                               ⟶ A
                                                                                               ⟶ A].
  (formula_ind(v;
               pvar(name) var[name];
               pnot(sub) rec1.not[sub;rec1];
               pand(left,right) rec2,rec3.and[left;right;rec2;rec3];
               por(left,right) rec4,rec5.or[left;right;rec4;rec5];
               pimp(left,right) rec6,rec7.imp[left;right;rec6;rec7])  ∈ A)


Proof




Definitions occuring in Statement :  formula_ind: formula_ind formula: formula() uall: [x:A]. B[x] so_apply: x[s1;s2;s3;s4] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B true: True so_lambda: λ2x.t[x] so_apply: x[s] prop: uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  formula_ind_wf true_wf formula_wf istype-true subtype_rel_dep_function istype-atom istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt universeIsType functionExtensionality applyEquality dependent_set_memberEquality_alt natural_numberEquality closedConclusion atomEquality setEquality setIsType independent_isectElimination setElimination rename lambdaFormation_alt because_Cache functionEquality inhabitedIsType applyLambdaEquality functionIsType instantiate universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[v:formula()].  \mforall{}[var:name:Atom  {}\mrightarrow{}  A].  \mforall{}[not:sub:formula()  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
\mforall{}[and,or,imp:left:formula()  {}\mrightarrow{}  right:formula()  {}\mrightarrow{}  A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (formula\_ind(v;
                              pvar(name){}\mRightarrow{}  var[name];
                              pnot(sub){}\mRightarrow{}  rec1.not[sub;rec1];
                              pand(left,right){}\mRightarrow{}  rec2,rec3.and[left;right;rec2;rec3];
                              por(left,right){}\mRightarrow{}  rec4,rec5.or[left;right;rec4;rec5];
                              pimp(left,right){}\mRightarrow{}  rec6,rec7.imp[left;right;rec6;rec7])    \mmember{}  A)



Date html generated: 2020_05_20-AM-08_18_53
Last ObjectModification: 2020_01_24-PM-00_51_06

Theory : general


Home Index