Nuprl Lemma : funinv_wf3
∀[n:ℕ]. ∀[f:ℕn →⟶ ℕn].  (inv(f) ∈ ℕn →⟶ ℕn)
Proof
Definitions occuring in Statement : 
injection: A →⟶ B
, 
funinv: inv(f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
injection: A →⟶ B
Lemmas referenced : 
funinv_wf2
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n].    (inv(f)  \mmember{}  \mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n)
Date html generated:
2016_05_15-PM-06_11_51
Last ObjectModification:
2015_12_27-PM-00_13_15
Theory : general
Home
Index