Nuprl Lemma : funinv_wf3

[n:ℕ]. ∀[f:ℕn →⟶ ℕn].  (inv(f) ∈ ℕn →⟶ ℕn)


Proof




Definitions occuring in Statement :  injection: A →⟶ B funinv: inv(f) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  injection: A →⟶ B
Lemmas referenced :  funinv_wf2
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n].    (inv(f)  \mmember{}  \mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n)



Date html generated: 2016_05_15-PM-06_11_51
Last ObjectModification: 2015_12_27-PM-00_13_15

Theory : general


Home Index