Nuprl Lemma : funinv_wf2

[n:ℕ]. ∀[f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} ].  (inv(f) ∈ {f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} )


Proof




Definitions occuring in Statement :  funinv: inv(f) inject: Inj(A;B;f) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: nat: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B guard: {T} and: P ∧ Q int_seg: {i..j-} all: x:A. B[x] uimplies: supposing a implies:  Q cand: c∧ B
Lemmas referenced :  set_wf int_seg_wf inject_wf nat_wf subtype_rel_sets all_wf equal_wf and_wf funinv_wf surject_wf injection-is-surjection
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin functionEquality natural_numberEquality setElimination rename hypothesisEquality lambdaEquality isect_memberEquality because_Cache applyEquality productEquality intEquality independent_isectElimination setEquality lambdaFormation productElimination dependent_functionElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  ].    (inv(f)  \mmember{}  \{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  )



Date html generated: 2016_05_14-AM-07_30_35
Last ObjectModification: 2015_12_26-PM-01_25_52

Theory : int_2


Home Index