Step
*
1
2
1
2
1
of Lemma
generic-countable-intersection
.....assertion.....
1. [T] : Type
2. [S] : ℕ ⟶ (ℕ ⟶ T) ⟶ ℙ'
3. F : i:ℕ ⟶ (∃R:ℕ ⟶ (T List) ⟶ ℙ
((∀i:ℕ. ∀s:T List. ∃s':T List. (s ≤ s' ∧ (R i s')))
∧ (∀x:ℕ ⟶ T. ((∀i:ℕ. ∃s:T List. ((R i s) ∧ (∀n:ℕ||s||. (s[n] = (x n) ∈ T))))
⇒ S[i;x]))))
4. code : ℕ ⟶ (ℕ × ℕ)
5. Surj(ℕ;ℕ × ℕ;code)
6. ∀i:ℕ. ∀s:T List. ∃s':T List. (s ≤ s' ∧ (let i,j = code i in (fst((F i))) j s'))
7. x : ℕ ⟶ T
8. ∀i:ℕ. ∃s:T List. ((let i,j = code i in (fst((F i))) j s) ∧ (∀n:ℕ||s||. (s[n] = (x n) ∈ T)))
9. i : ℕ
⊢ ∀i,j:ℕ. ∃s:T List. (((fst((F i))) j s) ∧ (∀n:ℕ||s||. (s[n] = (x n) ∈ T)))
BY
{ xxxAutoxxx }
1
1. [T] : Type
2. [S] : ℕ ⟶ (ℕ ⟶ T) ⟶ ℙ'
3. F : i:ℕ ⟶ (∃R:ℕ ⟶ (T List) ⟶ ℙ
((∀i:ℕ. ∀s:T List. ∃s':T List. (s ≤ s' ∧ (R i s')))
∧ (∀x:ℕ ⟶ T. ((∀i:ℕ. ∃s:T List. ((R i s) ∧ (∀n:ℕ||s||. (s[n] = (x n) ∈ T))))
⇒ S[i;x]))))
4. code : ℕ ⟶ (ℕ × ℕ)
5. Surj(ℕ;ℕ × ℕ;code)
6. ∀i:ℕ. ∀s:T List. ∃s':T List. (s ≤ s' ∧ (let i,j = code i in (fst((F i))) j s'))
7. x : ℕ ⟶ T
8. ∀i:ℕ. ∃s:T List. ((let i,j = code i in (fst((F i))) j s) ∧ (∀n:ℕ||s||. (s[n] = (x n) ∈ T)))
9. i : ℕ
10. i1 : ℕ
11. j : ℕ
⊢ ∃s:T List. (((fst((F i1))) j s) ∧ (∀n:ℕ||s||. (s[n] = (x n) ∈ T)))
Latex:
Latex:
.....assertion.....
1. [T] : Type
2. [S] : \mBbbN{} {}\mrightarrow{} (\mBbbN{} {}\mrightarrow{} T) {}\mrightarrow{} \mBbbP{}'
3. F : i:\mBbbN{} {}\mrightarrow{} (\mexists{}R:\mBbbN{} {}\mrightarrow{} (T List) {}\mrightarrow{} \mBbbP{}
((\mforall{}i:\mBbbN{}. \mforall{}s:T List. \mexists{}s':T List. (s \mleq{} s' \mwedge{} (R i s')))
\mwedge{} (\mforall{}x:\mBbbN{} {}\mrightarrow{} T
((\mforall{}i:\mBbbN{}. \mexists{}s:T List. ((R i s) \mwedge{} (\mforall{}n:\mBbbN{}||s||. (s[n] = (x n))))) {}\mRightarrow{} S[i;x]))))
4. code : \mBbbN{} {}\mrightarrow{} (\mBbbN{} \mtimes{} \mBbbN{})
5. Surj(\mBbbN{};\mBbbN{} \mtimes{} \mBbbN{};code)
6. \mforall{}i:\mBbbN{}. \mforall{}s:T List. \mexists{}s':T List. (s \mleq{} s' \mwedge{} (let i,j = code i in (fst((F i))) j s'))
7. x : \mBbbN{} {}\mrightarrow{} T
8. \mforall{}i:\mBbbN{}. \mexists{}s:T List. ((let i,j = code i in (fst((F i))) j s) \mwedge{} (\mforall{}n:\mBbbN{}||s||. (s[n] = (x n))))
9. i : \mBbbN{}
\mvdash{} \mforall{}i,j:\mBbbN{}. \mexists{}s:T List. (((fst((F i))) j s) \mwedge{} (\mforall{}n:\mBbbN{}||s||. (s[n] = (x n))))
By
Latex:
xxxAutoxxx
Home
Index