Nuprl Lemma : generic-countable-intersection

[T:Type]. ∀[S:ℕ ⟶ (ℕ ⟶ T) ⟶ ℙ'].  ((∀i:ℕGeneric{x:ℕ⟶T|S[i;x]})  Generic{x:ℕ⟶T|∀i:ℕS[i;x]})


Proof




Definitions occuring in Statement :  generic: Generic{f:ℕ⟶T|S[f]} nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q generic: Generic{f:ℕ⟶T|S[f]} member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] subtype_rel: A ⊆B and: P ∧ Q int_seg: {i..j-} uimplies: supposing a guard: {T} nat: ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b squash: T le: A ≤ B less_than': less_than'(a;b) cand: c∧ B pi1: fst(t) surject: Surj(A;B;f) sq_type: SQType(T)
Lemmas referenced :  all_wf nat_wf generic_wf pair-coding-exists exists_wf list_wf iseg_wf int_seg_wf length_wf equal_wf select_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_subtype_nat false_wf pi1_wf_top subtype_base_sq product_subtype_base set_subtype_base le_wf int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution sqequalRule cut thin instantiate introduction extract_by_obid isectElimination cumulativity hypothesis lambdaEquality hypothesisEquality applyEquality functionExtensionality functionEquality universeEquality rename productElimination dependent_pairFormation because_Cache productEquality natural_numberEquality setElimination independent_isectElimination dependent_functionElimination unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination independent_pairEquality equalityTransitivity equalitySymmetry independent_functionElimination promote_hyp

Latex:
\mforall{}[T:Type].  \mforall{}[S:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbP{}'].
    ((\mforall{}i:\mBbbN{}.  Generic\{x:\mBbbN{}{}\mrightarrow{}T|S[i;x]\})  {}\mRightarrow{}  Generic\{x:\mBbbN{}{}\mrightarrow{}T|\mforall{}i:\mBbbN{}.  S[i;x]\})



Date html generated: 2018_05_21-PM-07_57_15
Last ObjectModification: 2017_07_26-PM-05_34_47

Theory : general


Home Index