Nuprl Lemma : generic-countable-intersection
∀[T:Type]. ∀[S:ℕ ⟶ (ℕ ⟶ T) ⟶ ℙ'].  ((∀i:ℕ. Generic{x:ℕ⟶T|S[i;x]}) 
⇒ Generic{x:ℕ⟶T|∀i:ℕ. S[i;x]})
Proof
Definitions occuring in Statement : 
generic: Generic{f:ℕ⟶T|S[f]}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
generic: Generic{f:ℕ⟶T|S[f]}
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
nat: ℕ
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
cand: A c∧ B
, 
pi1: fst(t)
, 
surject: Surj(A;B;f)
, 
sq_type: SQType(T)
Lemmas referenced : 
all_wf, 
nat_wf, 
generic_wf, 
pair-coding-exists, 
exists_wf, 
list_wf, 
iseg_wf, 
int_seg_wf, 
length_wf, 
equal_wf, 
select_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_subtype_nat, 
false_wf, 
pi1_wf_top, 
subtype_base_sq, 
product_subtype_base, 
set_subtype_base, 
le_wf, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
universeEquality, 
rename, 
productElimination, 
dependent_pairFormation, 
because_Cache, 
productEquality, 
natural_numberEquality, 
setElimination, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
promote_hyp
Latex:
\mforall{}[T:Type].  \mforall{}[S:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbP{}'].
    ((\mforall{}i:\mBbbN{}.  Generic\{x:\mBbbN{}{}\mrightarrow{}T|S[i;x]\})  {}\mRightarrow{}  Generic\{x:\mBbbN{}{}\mrightarrow{}T|\mforall{}i:\mBbbN{}.  S[i;x]\})
Date html generated:
2018_05_21-PM-07_57_15
Last ObjectModification:
2017_07_26-PM-05_34_47
Theory : general
Home
Index