Nuprl Lemma : pair-coding-exists
∃code:ℕ ⟶ (ℕ × ℕ). Surj(ℕ;ℕ × ℕ;code)
Proof
Definitions occuring in Statement : 
surject: Surj(A;B;f)
, 
nat: ℕ
, 
exists: ∃x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
surject: Surj(A;B;f)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
coded-pair_wf, 
nat_wf, 
surject_wf, 
code-pair_wf, 
equal_wf, 
squash_wf, 
true_wf, 
coded-code-pair, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_pairFormation, 
lambdaEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
sqequalRule, 
productEquality, 
functionExtensionality, 
applyEquality, 
productElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
independent_pairEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mexists{}code:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}  \mtimes{}  \mBbbN{}).  Surj(\mBbbN{};\mBbbN{}  \mtimes{}  \mBbbN{};code)
Date html generated:
2018_05_21-PM-07_56_51
Last ObjectModification:
2017_07_26-PM-05_34_27
Theory : general
Home
Index