Nuprl Lemma : code-pair_wf
∀[a,b:ℕ]. (code-pair(a;b) ∈ ℕ)
Proof
Definitions occuring in Statement :
code-pair: code-pair(a;b)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
code-pair: code-pair(a;b)
,
nat: ℕ
,
ge: i ≥ j
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
guard: {T}
,
uiff: uiff(P;Q)
Lemmas referenced :
triangular-num_wf,
nat_properties,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermAdd_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
le_wf,
add_nat_wf,
nat_wf,
add-is-int-iff,
intformeq_wf,
int_formula_prop_eq_lemma,
false_wf,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
dependent_set_memberEquality,
addEquality,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
because_Cache,
hypothesis,
hypothesisEquality,
dependent_functionElimination,
unionElimination,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
applyEquality,
lambdaFormation,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
pointwiseFunctionality,
promote_hyp,
baseApply,
closedConclusion,
baseClosed,
productElimination,
independent_functionElimination,
axiomEquality
Latex:
\mforall{}[a,b:\mBbbN{}]. (code-pair(a;b) \mmember{} \mBbbN{})
Date html generated:
2018_05_21-PM-07_54_31
Last ObjectModification:
2017_07_26-PM-05_32_05
Theory : general
Home
Index