Nuprl Lemma : generic_wf

[T:Type]. ∀[S:(ℕ ⟶ T) ⟶ ℙ'].  (Generic{f:ℕ⟶T|S[f]} ∈ ℙ')


Proof




Definitions occuring in Statement :  generic: Generic{f:ℕ⟶T|S[f]} nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  generic: Generic{f:ℕ⟶T|S[f]} uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] implies:  Q int_seg: {i..j-} uimplies: supposing a guard: {T} nat: ge: i ≥  lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top less_than: a < b squash: T le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  false_wf int_seg_subtype_nat int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_properties select_wf equal_wf length_wf int_seg_wf iseg_wf all_wf list_wf nat_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination functionEquality hypothesis applyEquality lambdaEquality cumulativity hypothesisEquality universeEquality productEquality because_Cache natural_numberEquality setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination lambdaFormation axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[S:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbP{}'].    (Generic\{f:\mBbbN{}{}\mrightarrow{}T|S[f]\}  \mmember{}  \mBbbP{}')



Date html generated: 2016_05_15-PM-04_42_38
Last ObjectModification: 2016_01_16-AM-11_21_36

Theory : general


Home Index