Step
*
1
1
of Lemma
isqrt-convex
1. a : ℕ
2. b : ℕa
3. isqrt(b) ≤ isqrt(a)
4. (isqrt(b) + 2) ≤ isqrt(a)
⊢ (isqrt(a) - isqrt(b)) ≤ isqrt(a - b)
BY
{ xxx((InstLemma `isqrt-property` [⌜a - b⌝]⋅ THENA Auto)
THEN MoveToConcl (-1)
THEN GenConclTerm ⌜isqrt(a - b)⌝⋅
THEN Auto
THEN Assert ⌜((isqrt(a) - isqrt(b)) * (isqrt(a) - isqrt(b))) ≤ (a - b)⌝⋅)xxx }
1
.....assertion.....
1. a : ℕ
2. b : ℕa
3. isqrt(b) ≤ isqrt(a)
4. (isqrt(b) + 2) ≤ isqrt(a)
5. v : ℕ
6. isqrt(a - b) = v ∈ ℕ
7. (v * v) ≤ (a - b)
8. a - b < (v + 1) * (v + 1)
⊢ ((isqrt(a) - isqrt(b)) * (isqrt(a) - isqrt(b))) ≤ (a - b)
2
1. a : ℕ
2. b : ℕa
3. isqrt(b) ≤ isqrt(a)
4. (isqrt(b) + 2) ≤ isqrt(a)
5. v : ℕ
6. isqrt(a - b) = v ∈ ℕ
7. (v * v) ≤ (a - b)
8. a - b < (v + 1) * (v + 1)
9. ((isqrt(a) - isqrt(b)) * (isqrt(a) - isqrt(b))) ≤ (a - b)
⊢ (isqrt(a) - isqrt(b)) ≤ v
Latex:
Latex:
1. a : \mBbbN{}
2. b : \mBbbN{}a
3. isqrt(b) \mleq{} isqrt(a)
4. (isqrt(b) + 2) \mleq{} isqrt(a)
\mvdash{} (isqrt(a) - isqrt(b)) \mleq{} isqrt(a - b)
By
Latex:
xxx((InstLemma `isqrt-property` [\mkleeneopen{}a - b\mkleeneclose{}]\mcdot{} THENA Auto)
THEN MoveToConcl (-1)
THEN GenConclTerm \mkleeneopen{}isqrt(a - b)\mkleeneclose{}\mcdot{}
THEN Auto
THEN Assert \mkleeneopen{}((isqrt(a) - isqrt(b)) * (isqrt(a) - isqrt(b))) \mleq{} (a - b)\mkleeneclose{}\mcdot{})xxx
Home
Index