Nuprl Lemma : isqrt-convex
∀a,b:ℕ.  (|isqrt(a) - isqrt(b)| ≤ isqrt(|a - b|))
Proof
Definitions occuring in Statement : 
isqrt: isqrt(x), 
absval: |i|, 
nat: ℕ, 
le: A ≤ B, 
all: ∀x:A. B[x], 
subtract: n - m
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
int_seg: {i..j-}, 
nat: ℕ, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
prop: ℙ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
subtract: n - m, 
rev_uimplies: rev_uimplies(P;Q), 
isqrt: isqrt(x), 
integer-sqrt-ext, 
genrec-ap: genrec-ap, 
squash: ↓T, 
label: ...$L... t, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
less_than: a < b, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
absval: |i|
Lemmas referenced : 
isqrt-non-decreasing, 
int_seg_subtype_nat, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
isqrt_wf, 
false_wf, 
int_seg_wf, 
nat_wf, 
isqrt-property, 
subtract_wf, 
itermConstant_wf, 
itermSubtract_wf, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
le_wf, 
less_than_wf, 
equal_wf, 
mul-distributes, 
mul-distributes-right, 
add-associates, 
minus-one-mul, 
mul-associates, 
mul-commutes, 
mul-swap, 
one-mul, 
le_functionality, 
add_functionality_wrt_le, 
le_weakening, 
itermAdd_wf, 
itermMultiply_wf, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
add_nat_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
multiply_functionality_wrt_le, 
add-commutes, 
add-swap, 
two-mul, 
less_than_functionality, 
decidable__lt, 
lelt_wf, 
squash_wf, 
true_wf, 
absval_pos, 
decidable__equal_int, 
iff_weakening_equal, 
absval_unfold, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
itermMinus_wf, 
int_term_value_minus_lemma, 
int_subtype_base, 
absval_wf, 
add-mul-special, 
zero-mul, 
integer-sqrt-ext
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
addEquality, 
dependent_set_memberEquality, 
productEquality, 
multiplyEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
minusEquality, 
applyLambdaEquality, 
hyp_replacement, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
equalityElimination, 
lessCases, 
isect_memberFormation, 
sqequalAxiom, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}a,b:\mBbbN{}.    (|isqrt(a)  -  isqrt(b)|  \mleq{}  isqrt(|a  -  b|))
Date html generated:
2018_05_21-PM-07_53_12
Last ObjectModification:
2017_07_26-PM-05_30_43
Theory : general
Home
Index