Nuprl Lemma : isqrt-convex

a,b:ℕ.  (|isqrt(a) isqrt(b)| ≤ isqrt(|a b|))


Proof




Definitions occuring in Statement :  isqrt: isqrt(x) absval: |i| nat: le: A ≤ B all: x:A. B[x] subtract: m
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a guard: {T} int_seg: {i..j-} nat: ge: i ≥  lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: le: A ≤ B less_than': less_than'(a;b) subtract: m rev_uimplies: rev_uimplies(P;Q) isqrt: isqrt(x) integer-sqrt-ext genrec-ap: genrec-ap squash: T label: ...$L... t true: True iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b absval: |i|
Lemmas referenced :  isqrt-non-decreasing int_seg_subtype_nat int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf isqrt_wf false_wf int_seg_wf nat_wf isqrt-property subtract_wf itermConstant_wf itermSubtract_wf int_term_value_constant_lemma int_term_value_subtract_lemma le_wf less_than_wf equal_wf mul-distributes mul-distributes-right add-associates minus-one-mul mul-associates mul-commutes mul-swap one-mul le_functionality add_functionality_wrt_le le_weakening itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma add_nat_wf intformeq_wf int_formula_prop_eq_lemma multiply_functionality_wrt_le add-commutes add-swap two-mul less_than_functionality decidable__lt lelt_wf squash_wf true_wf absval_pos decidable__equal_int iff_weakening_equal absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot itermMinus_wf int_term_value_minus_lemma int_subtype_base absval_wf add-mul-special zero-mul integer-sqrt-ext
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality natural_numberEquality because_Cache independent_isectElimination hypothesis sqequalRule setElimination rename productElimination dependent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll addEquality dependent_set_memberEquality productEquality multiplyEquality equalityTransitivity equalitySymmetry independent_functionElimination minusEquality applyLambdaEquality hyp_replacement imageElimination imageMemberEquality baseClosed universeEquality equalityElimination lessCases isect_memberFormation sqequalAxiom promote_hyp instantiate cumulativity

Latex:
\mforall{}a,b:\mBbbN{}.    (|isqrt(a)  -  isqrt(b)|  \mleq{}  isqrt(|a  -  b|))



Date html generated: 2018_05_21-PM-07_53_12
Last ObjectModification: 2017_07_26-PM-05_30_43

Theory : general


Home Index