Step
*
2
2
2
1
of Lemma
last_index_property
1. T : Type
2. P : T ⟶ 𝔹
3. u : T
4. ¬↑P[u]
5. v : T List
6. ¬0 < last_index(v;x.P[x])
7. (↑P[v[last_index(v;x.P[x]) - 1]]) ∧ (¬(∃x∈nth_tl(last_index(v;x.P[x]);v). ↑P[x])) supposing 0 < last_index(v;x.P[x])
8. ¬(∃x∈v. ↑P[x]) supposing last_index(v;x.P[x]) = 0 ∈ ℤ
9. last_index([u / v];x.P[x]) = 0 ∈ ℤ
10. (↑P[[u / v][-1]]) ∧ (¬(∃x∈[u / v]. ↑P[x])) supposing 0 < 0
11. 0 = 0 ∈ ℤ
⊢ ¬((↑P[u]) ∨ (∃x∈v. ↑P[x]))
BY
{ TACTIC:((D 0 THENA Auto) THEN D -1 THEN Auto) }
1
1. T : Type
2. P : T ⟶ 𝔹
3. u : T
4. ¬↑P[u]
5. v : T List
6. ¬0 < last_index(v;x.P[x])
7. (↑P[v[last_index(v;x.P[x]) - 1]]) ∧ (¬(∃x∈nth_tl(last_index(v;x.P[x]);v). ↑P[x])) supposing 0 < last_index(v;x.P[x])
8. ¬(∃x∈v. ↑P[x]) supposing last_index(v;x.P[x]) = 0 ∈ ℤ
9. last_index([u / v];x.P[x]) = 0 ∈ ℤ
10. (↑P[[u / v][-1]]) ∧ (¬(∃x∈[u / v]. ↑P[x])) supposing 0 < 0
11. 0 = 0 ∈ ℤ
12. (∃x∈v. ↑P[x])
⊢ False
Latex:
Latex:
1. T : Type
2. P : T {}\mrightarrow{} \mBbbB{}
3. u : T
4. \mneg{}\muparrow{}P[u]
5. v : T List
6. \mneg{}0 < last\_index(v;x.P[x])
7. (\muparrow{}P[v[last\_index(v;x.P[x]) - 1]]) \mwedge{} (\mneg{}(\mexists{}x\mmember{}nth\_tl(last\_index(v;x.P[x]);v). \muparrow{}P[x]))
supposing 0 < last\_index(v;x.P[x])
8. \mneg{}(\mexists{}x\mmember{}v. \muparrow{}P[x]) supposing last\_index(v;x.P[x]) = 0
9. last\_index([u / v];x.P[x]) = 0
10. (\muparrow{}P[[u / v][-1]]) \mwedge{} (\mneg{}(\mexists{}x\mmember{}[u / v]. \muparrow{}P[x])) supposing 0 < 0
11. 0 = 0
\mvdash{} \mneg{}((\muparrow{}P[u]) \mvee{} (\mexists{}x\mmember{}v. \muparrow{}P[x]))
By
Latex:
TACTIC:((D 0 THENA Auto) THEN D -1 THEN Auto)
Home
Index