Nuprl Lemma : last_index_property
ā[T:Type]. ā[P:T ā¶ š¹]. ā[L:T List].
((āP[L[last_index(L;x.P[x]) - 1]]) ā§ (Ā¬(āxānth_tl(last_index(L;x.P[x]);L). āP[x])) supposing 0 < last_index(L;x.P[x])
ā§ Ā¬(āxāL. āP[x]) supposing last_index(L;x.P[x]) = 0 ā ā¤)
Proof
Definitions occuring in Statement :
last_index: last_index(L;x.P[x])
,
l_exists: (āxāL. P[x])
,
select: L[n]
,
nth_tl: nth_tl(n;as)
,
list: T List
,
assert: āb
,
bool: š¹
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ā[x:A]. B[x]
,
so_apply: x[s]
,
not: Ā¬A
,
and: P ā§ Q
,
function: x:A ā¶ B[x]
,
subtract: n - m
,
natural_number: $n
,
int: ā¤
,
universe: Type
,
equal: s = t ā T
Definitions unfolded in proof :
uall: ā[x:A]. B[x]
,
member: t ā T
,
all: āx:A. B[x]
,
nat: ā
,
implies: P
ā Q
,
false: False
,
ge: i ā„ j
,
uimplies: b supposing a
,
not: Ā¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: āx:A. B[x]
,
top: Top
,
and: P ā§ Q
,
prop: ā
,
guard: {T}
,
or: P āØ Q
,
cons: [a / b]
,
le: A ā¤ B
,
less_than': less_than'(a;b)
,
so_apply: x[s]
,
so_lambda: Ī»2x.t[x]
,
subtype_rel: A ār B
,
decidable: Dec(P)
,
less_than: a < b
,
squash: āT
,
int_seg: {i..j-}
,
lelt: i ā¤ j < k
,
colength: colength(L)
,
nil: []
,
it: ā
,
sq_type: SQType(T)
,
so_lambda: Ī»2x y.t[x; y]
,
so_apply: x[s1;s2]
,
cand: A cā§ B
,
pi2: snd(t)
,
select: L[n]
,
last_index: last_index(L;x.P[x])
,
assert: āb
,
l_exists: (āxāL. P[x])
,
bool: š¹
,
unit: Unit
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
bnot: Ā¬bb
,
rev_implies: P
ā Q
,
iff: P
āā Q
,
subtract: n - m
,
nth_tl: nth_tl(n;as)
,
le_int: i ā¤z j
,
lt_int: i <z j
,
tl: tl(l)
,
true: True
Lemmas referenced :
nat_properties,
full-omega-unsat,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
istype-less_than,
assert_witness,
intformeq_wf,
int_formula_prop_eq_lemma,
list-cases,
product_subtype_list,
colength-cons-not-zero,
istype-nat,
colength_wf_list,
istype-false,
istype-le,
select_wf,
subtract_wf,
last_index_wf,
decidable__le,
intformnot_wf,
itermSubtract_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
non_neg_length,
decidable__lt,
length_wf,
length_wf_nat,
int_seg_properties,
itermAdd_wf,
int_term_value_add_lemma,
subtract-1-ge-0,
subtype_base_sq,
set_subtype_base,
int_subtype_base,
spread_cons_lemma,
decidable__equal_int,
le_wf,
list_wf,
bool_wf,
istype-universe,
equal-wf-base,
assert_wf,
l_exists_wf_nil,
less_than_wf,
equal_wf,
pi2_wf,
ifthenelse_wf,
nil_wf,
list_accum_wf,
nth_tl_nil,
base_wf,
stuck-spread,
list_accum_nil_lemma,
length_of_nil_lemma,
last_index_cons,
lt_int_wf,
eqtt_to_assert,
assert_of_lt_int,
eqff_to_assert,
bool_subtype_base,
bool_cases_sqequal,
assert-bnot,
iff_weakening_uiff,
select-cons-tl,
add-associates,
add-commutes,
add-swap,
zero-add,
cons_wf,
length_of_cons_lemma,
length_cons,
le_int_wf,
assert_of_le_int,
reduce_tl_cons_lemma,
l_exists_cons,
l_exists_wf,
l_member_wf,
istype-assert
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
thin,
lambdaFormation_alt,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
dependent_functionElimination,
isect_memberEquality_alt,
voidElimination,
sqequalRule,
independent_pairFormation,
universeIsType,
productElimination,
independent_pairEquality,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
functionIsTypeImplies,
inhabitedIsType,
isectIsTypeImplies,
unionElimination,
promote_hyp,
hypothesis_subsumption,
equalityIsType1,
dependent_set_memberEquality_alt,
because_Cache,
applyEquality,
closedConclusion,
imageElimination,
addEquality,
instantiate,
equalityIsType4,
baseApply,
baseClosed,
intEquality,
functionIsType,
universeEquality,
isect_memberFormation,
spreadEquality,
lambdaEquality,
productEquality,
lambdaFormation,
voidEquality,
isect_memberEquality,
dependent_pairFormation,
cumulativity,
equalityElimination,
equalityIsType3,
setIsType,
unionIsType
Latex:
\mforall{}[T:Type]. \mforall{}[P:T {}\mrightarrow{} \mBbbB{}]. \mforall{}[L:T List].
((\muparrow{}P[L[last\_index(L;x.P[x]) - 1]]) \mwedge{} (\mneg{}(\mexists{}x\mmember{}nth\_tl(last\_index(L;x.P[x]);L). \muparrow{}P[x]))
supposing 0 < last\_index(L;x.P[x])
\mwedge{} \mneg{}(\mexists{}x\mmember{}L. \muparrow{}P[x]) supposing last\_index(L;x.P[x]) = 0)
Date html generated:
2019_10_15-AM-11_10_27
Last ObjectModification:
2018_10_18-PM-11_52_11
Theory : general
Home
Index