Nuprl Lemma : last_index_cons
∀[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List]. ∀[a:T].
  (last_index([a / L];x.P[x])
  = if 0 <z last_index(L;x.P[x]) then 1 + last_index(L;x.P[x])
    if P[a] then 1
    else 0
    fi 
  ∈ ℤ)
Proof
Definitions occuring in Statement : 
last_index: last_index(L;x.P[x])
, 
cons: [a / b]
, 
list: T List
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
prop: ℙ
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
last_index: last_index(L;x.P[x])
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
pi2: snd(t)
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
true: True
Lemmas referenced : 
last_index_append, 
cons_wf, 
nil_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
ifthenelse_wf, 
lt_int_wf, 
last_index_wf, 
int_seg_wf, 
length_wf, 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hyp_replacement, 
equalitySymmetry, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
intEquality, 
natural_numberEquality, 
functionExtensionality, 
setElimination, 
rename, 
addEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].  \mforall{}[a:T].
    (last\_index([a  /  L];x.P[x])
    =  if  0  <z  last\_index(L;x.P[x])  then  1  +  last\_index(L;x.P[x])
        if  P[a]  then  1
        else  0
        fi  )
Date html generated:
2018_05_21-PM-07_00_28
Last ObjectModification:
2017_07_26-PM-05_02_56
Theory : general
Home
Index