Nuprl Lemma : last_index_wf

[T:Type]. ∀[L:T List]. ∀[P:T ⟶ 𝔹].  (last_index(L;x.P[x]) ∈ ℕ||L|| 1)


Proof




Definitions occuring in Statement :  last_index: last_index(L;x.P[x]) length: ||as|| list: List int_seg: {i..j-} bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] last_index: last_index(L;x.P[x]) member: t ∈ T int_seg: {i..j-} all: x:A. B[x] implies:  Q pi2: snd(t) lelt: i ≤ j < k and: P ∧ Q guard: {T} decidable: Dec(P) or: P ∨ Q false: False less_than: a < b squash: T uiff: uiff(P;Q) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top prop: so_apply: x[s] nat: ge: i ≥  subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] sq_type: SQType(T) less_than': less_than'(a;b) bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b le: A ≤ B true: True
Lemmas referenced :  int_seg_wf length_wf int_seg_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf false_wf lelt_wf equal_wf bool_wf list_wf nat_properties intformle_wf int_formula_prop_le_lemma ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases length_of_nil_lemma list_accum_nil_lemma decidable__le product_subtype_list spread_cons_lemma intformeq_wf int_formula_prop_eq_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int length_of_cons_lemma list_accum_cons_lemma eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot subtype_rel_product int_seg_subtype subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut thin productEquality introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality addEquality cumulativity hypothesisEquality hypothesis setElimination rename because_Cache lambdaFormation productElimination sqequalRule dependent_set_memberEquality independent_pairFormation dependent_functionElimination unionElimination pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseApply closedConclusion baseClosed independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination functionEquality universeEquality intWeakElimination axiomEquality applyEquality dependent_pairEquality hypothesis_subsumption applyLambdaEquality instantiate functionExtensionality equalityElimination imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].    (last\_index(L;x.P[x])  \mmember{}  \mBbbN{}||L||  +  1)



Date html generated: 2018_05_21-PM-07_00_11
Last ObjectModification: 2017_07_26-PM-05_02_43

Theory : general


Home Index