Step
*
1
of Lemma
least-factor_wf
1. n : ℤ
2. 1 < |n|
⊢ least-factor(n) ∈ {p:ℕ| 1 < p ∧ prime(p) ∧ (p | n) ∧ (∀q:ℕ. (prime(q)
⇒ (q | n)
⇒ (p ≤ q)))}
BY
{ xxxAssert ⌜(n rem |n|) = 0 ∈ ℤ⌝⋅xxx }
1
.....assertion.....
1. n : ℤ
2. 1 < |n|
⊢ (n rem |n|) = 0 ∈ ℤ
2
1. n : ℤ
2. 1 < |n|
3. (n rem |n|) = 0 ∈ ℤ
⊢ least-factor(n) ∈ {p:ℕ| 1 < p ∧ prime(p) ∧ (p | n) ∧ (∀q:ℕ. (prime(q)
⇒ (q | n)
⇒ (p ≤ q)))}
Latex:
Latex:
1. n : \mBbbZ{}
2. 1 < |n|
\mvdash{} least-factor(n) \mmember{} \{p:\mBbbN{}| 1 < p \mwedge{} prime(p) \mwedge{} (p | n) \mwedge{} (\mforall{}q:\mBbbN{}. (prime(q) {}\mRightarrow{} (q | n) {}\mRightarrow{} (p \mleq{} q)))\}
By
Latex:
xxxAssert \mkleeneopen{}(n rem |n|) = 0\mkleeneclose{}\mcdot{}xxx
Home
Index