Step
*
1
2
of Lemma
least-factor_wf
1. n : ℤ
2. 1 < |n|
3. (n rem |n|) = 0 ∈ ℤ
⊢ least-factor(n) ∈ {p:ℕ| 1 < p ∧ prime(p) ∧ (p | n) ∧ (∀q:ℕ. (prime(q)
⇒ (q | n)
⇒ (p ≤ q)))}
BY
{ ((Assert ∃m:ℕ|n| - 1. (↑((λi.(n rem i + 2 =z 0)) m)) BY
(Reduce 0
THEN InstConcl [⌜|n| - 2⌝]⋅
THEN Auto'
THEN (RW IntNormC 0 THEN Auto)
THEN RW assert_pushdownC 0
THEN Auto))
THEN (Assert ∃m:ℕ. (↑((λi.(n rem i + 2 =z 0)) m)) BY
(All Reduce THEN ParallelLast))
THEN (InstLemma `mu_wf` [⌜λi.(n rem i + 2 =z 0)⌝]⋅ THENA Auto)
THEN (InstLemma `mu-property` [⌜λi.(n rem i + 2 =z 0)⌝]⋅ THENA Auto)) }
1
1. n : ℤ
2. 1 < |n|
3. (n rem |n|) = 0 ∈ ℤ
4. ∃m:ℕ|n| - 1. (↑((λi.(n rem i + 2 =z 0)) m))
5. ∃m:ℕ. (↑((λi.(n rem i + 2 =z 0)) m))
6. mu(λi.(n rem i + 2 =z 0)) ∈ ℕ
7. (↑((λi.(n rem i + 2 =z 0)) mu(λi.(n rem i + 2 =z 0))))
∧ (∀[i:ℕ]. ¬↑((λi.(n rem i + 2 =z 0)) i) supposing i < mu(λi.(n rem i + 2 =z 0)))
⊢ least-factor(n) ∈ {p:ℕ| 1 < p ∧ prime(p) ∧ (p | n) ∧ (∀q:ℕ. (prime(q)
⇒ (q | n)
⇒ (p ≤ q)))}
Latex:
Latex:
1. n : \mBbbZ{}
2. 1 < |n|
3. (n rem |n|) = 0
\mvdash{} least-factor(n) \mmember{} \{p:\mBbbN{}| 1 < p \mwedge{} prime(p) \mwedge{} (p | n) \mwedge{} (\mforall{}q:\mBbbN{}. (prime(q) {}\mRightarrow{} (q | n) {}\mRightarrow{} (p \mleq{} q)))\}
By
Latex:
((Assert \mexists{}m:\mBbbN{}|n| - 1. (\muparrow{}((\mlambda{}i.(n rem i + 2 =\msubz{} 0)) m)) BY
(Reduce 0
THEN InstConcl [\mkleeneopen{}|n| - 2\mkleeneclose{}]\mcdot{}
THEN Auto'
THEN (RW IntNormC 0 THEN Auto)
THEN RW assert\_pushdownC 0
THEN Auto))
THEN (Assert \mexists{}m:\mBbbN{}. (\muparrow{}((\mlambda{}i.(n rem i + 2 =\msubz{} 0)) m)) BY
(All Reduce THEN ParallelLast))
THEN (InstLemma `mu\_wf` [\mkleeneopen{}\mlambda{}i.(n rem i + 2 =\msubz{} 0)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `mu-property` [\mkleeneopen{}\mlambda{}i.(n rem i + 2 =\msubz{} 0)\mkleeneclose{}]\mcdot{} THENA Auto))
Home
Index