Nuprl Lemma : longest-prefix-singleton

[x,P:Top].  (longest-prefix(P;[x]) [])


Proof




Definitions occuring in Statement :  longest-prefix: longest-prefix(P;L) cons: [a b] nil: [] uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T longest-prefix: longest-prefix(P;L) let: let all: x:A. B[x] top: Top ifthenelse: if then else fi  bfalse: ff btrue: tt
Lemmas referenced :  null_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma null_nil_lemma reduce_tl_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[x,P:Top].    (longest-prefix(P;[x])  \msim{}  [])



Date html generated: 2016_05_15-PM-03_43_37
Last ObjectModification: 2015_12_27-PM-01_18_54

Theory : general


Home Index