Nuprl Lemma : longest-prefix-singleton
∀[x,P:Top].  (longest-prefix(P;[x]) ~ [])
Proof
Definitions occuring in Statement : 
longest-prefix: longest-prefix(P;L)
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
longest-prefix: longest-prefix(P;L)
, 
let: let, 
all: ∀x:A. B[x]
, 
top: Top
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
Lemmas referenced : 
null_cons_lemma, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
null_nil_lemma, 
reduce_tl_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[x,P:Top].    (longest-prefix(P;[x])  \msim{}  [])
Date html generated:
2016_05_15-PM-03_43_37
Last ObjectModification:
2015_12_27-PM-01_18_54
Theory : general
Home
Index