Nuprl Lemma : max-WO_wf

max-WO{i:l}() ∈ WFO{i':l}


Proof




Definitions occuring in Statement :  max-WO: max-WO{i:l}() WFO: WFO{i:l}() member: t ∈ T
Definitions unfolded in proof :  max-WO: max-WO{i:l}() WFO: WFO{i:l}() member: t ∈ T uall: [x:A]. B[x] prop:
Lemmas referenced :  WFO_wf order-type-less_wf DCC-order-type_wf DCC_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep dependent_pairEquality cut lemma_by_obid hypothesis thin instantiate sqequalHypSubstitution isectElimination hypothesisEquality productEquality functionEquality cumulativity universeEquality

Latex:
max-WO\{i:l\}()  \mmember{}  WFO\{i':l\}



Date html generated: 2016_05_15-PM-04_15_23
Last ObjectModification: 2015_12_27-PM-02_58_26

Theory : general


Home Index