Nuprl Lemma : not-not-A-B-example

[A,B,F:ℙ].  ((((A ∧ B) ∨ (A  F) ∨ (B  F))  F)  F)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: implies:  Q or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: or: P ∨ Q and: P ∧ Q
Lemmas referenced :  or_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut hypothesis sqequalHypSubstitution independent_functionElimination thin functionEquality lemma_by_obid isectElimination hypothesisEquality universeEquality inrFormation inlFormation independent_pairFormation

Latex:
\mforall{}[A,B,F:\mBbbP{}].    ((((A  \mwedge{}  B)  \mvee{}  (A  {}\mRightarrow{}  F)  \mvee{}  (B  {}\mRightarrow{}  F))  {}\mRightarrow{}  F)  {}\mRightarrow{}  F)



Date html generated: 2016_05_15-PM-03_19_00
Last ObjectModification: 2015_12_27-PM-01_03_50

Theory : general


Home Index