Nuprl Lemma : not-true

uiff(¬True;False)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) not: ¬A false: False true: True
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T not: ¬A implies:  Q true: True false: False prop: uall: [x:A]. B[x]
Lemmas referenced :  not_wf true_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut sqequalHypSubstitution independent_functionElimination thin natural_numberEquality voidElimination sqequalRule lemma_by_obid isectElimination hypothesis lambdaEquality dependent_functionElimination hypothesisEquality

Latex:
uiff(\mneg{}True;False)



Date html generated: 2016_05_15-PM-03_27_08
Last ObjectModification: 2015_12_27-PM-01_08_16

Theory : general


Home Index