Nuprl Lemma : order-type-less-transitive-ext

Trans(WFO{i:l}();x,y.order-type-less() y)


Proof




Definitions occuring in Statement :  WFO: WFO{i:l}() order-type-less: order-type-less() trans: Trans(T;x,y.E[x; y]) apply: a
Definitions unfolded in proof :  member: t ∈ T spreadn: spread4 spreadn: spread3 compose: g ot-less-trans: ot-less-trans() order-type-less-transitive
Lemmas referenced :  order-type-less-transitive
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
Trans(WFO\{i:l\}();x,y.order-type-less()  x  y)



Date html generated: 2018_05_21-PM-07_01_51
Last ObjectModification: 2018_05_19-PM-04_43_52

Theory : general


Home Index