Nuprl Lemma : order-type-less-transitive
Trans(WFO{i:l}();x,y.order-type-less() x y)
Proof
Definitions occuring in Statement : 
WFO: WFO{i:l}(), 
order-type-less: order-type-less(), 
trans: Trans(T;x,y.E[x; y]), 
apply: f a
Definitions unfolded in proof : 
trans: Trans(T;x,y.E[x; y]), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
order-type-less: order-type-less(), 
WFO: WFO{i:l}(), 
spreadn: spread3, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
order-preserving: order-preserving(A;B;a1,a2.R1[a1; a2];b1,b2.R2[b1; b2];f), 
compose: f o g, 
cand: A c∧ B, 
prop: ℙ, 
infix_ap: x f y, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}
Lemmas referenced : 
compose_wf, 
and_wf, 
order-preserving_wf, 
all_wf, 
exists_wf, 
order-type-less_wf, 
WFO_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
thin, 
dependent_pairFormation, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
independent_pairFormation, 
because_Cache, 
lambdaEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
Trans(WFO\{i:l\}();x,y.order-type-less()  x  y)
Date html generated:
2016_05_15-PM-04_13_54
Last ObjectModification:
2015_12_27-PM-02_59_15
Theory : general
Home
Index