Nuprl Lemma : order-type-less-transitive

Trans(WFO{i:l}();x,y.order-type-less() y)


Proof




Definitions occuring in Statement :  WFO: WFO{i:l}() order-type-less: order-type-less() trans: Trans(T;x,y.E[x; y]) apply: a
Definitions unfolded in proof :  trans: Trans(T;x,y.E[x; y]) all: x:A. B[x] implies:  Q order-type-less: order-type-less() WFO: WFO{i:l}() spreadn: spread3 exists: x:A. B[x] and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] order-preserving: order-preserving(A;B;a1,a2.R1[a1; a2];b1,b2.R2[b1; b2];f) compose: g cand: c∧ B prop: infix_ap: y so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  compose_wf and_wf order-preserving_wf all_wf exists_wf order-type-less_wf WFO_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution sqequalRule productElimination thin dependent_pairFormation cut lemma_by_obid isectElimination hypothesisEquality hypothesis applyEquality independent_pairFormation because_Cache lambdaEquality dependent_functionElimination independent_functionElimination

Latex:
Trans(WFO\{i:l\}();x,y.order-type-less()  x  y)



Date html generated: 2016_05_15-PM-04_13_54
Last ObjectModification: 2015_12_27-PM-02_59_15

Theory : general


Home Index