Nuprl Lemma : order-preserving_wf

[A,B:Type]. ∀[R1:A ⟶ A ⟶ ℙ]. ∀[R2:B ⟶ B ⟶ ℙ]. ∀[f:A ⟶ B].
  (order-preserving(A;B;a1,a2.R1[a1;a2];b1,b2.R2[b1;b2];f) ∈ ℙ)


Proof




Definitions occuring in Statement :  order-preserving: order-preserving(A;B;a1,a2.R1[a1; a2];b1,b2.R2[b1; b2];f) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T order-preserving: order-preserving(A;B;a1,a2.R1[a1; a2];b1,b2.R2[b1; b2];f) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s1;s2] so_apply: x[s]
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache cumulativity universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[R1:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R2:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f:A  {}\mrightarrow{}  B].
    (order-preserving(A;B;a1,a2.R1[a1;a2];b1,b2.R2[b1;b2];f)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-03_28_32
Last ObjectModification: 2015_12_27-PM-01_09_25

Theory : general


Home Index