Nuprl Lemma : order-preserving_wf
∀[A,B:Type]. ∀[R1:A ⟶ A ⟶ ℙ]. ∀[R2:B ⟶ B ⟶ ℙ]. ∀[f:A ⟶ B].
  (order-preserving(A;B;a1,a2.R1[a1;a2];b1,b2.R2[b1;b2];f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
order-preserving: order-preserving(A;B;a1,a2.R1[a1; a2];b1,b2.R2[b1; b2];f)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
order-preserving: order-preserving(A;B;a1,a2.R1[a1; a2];b1,b2.R2[b1; b2];f)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[R1:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R2:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f:A  {}\mrightarrow{}  B].
    (order-preserving(A;B;a1,a2.R1[a1;a2];b1,b2.R2[b1;b2];f)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-03_28_32
Last ObjectModification:
2015_12_27-PM-01_09_25
Theory : general
Home
Index