Nuprl Lemma : ot-less-trans_wf

ot-less-trans() ∈ Trans(WFO{i:l}();x,y.order-type-less() y)


Proof




Definitions occuring in Statement :  ot-less-trans: ot-less-trans() WFO: WFO{i:l}() order-type-less: order-type-less() trans: Trans(T;x,y.E[x; y]) member: t ∈ T apply: a
Definitions unfolded in proof :  member: t ∈ T order-type-less-transitive-ext
Lemmas referenced :  order-type-less-transitive-ext
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity instantiate extract_by_obid hypothesis sqequalHypSubstitution sqequalRule equalityTransitivity equalitySymmetry

Latex:
ot-less-trans()  \mmember{}  Trans(WFO\{i:l\}();x,y.order-type-less()  x  y)



Date html generated: 2018_05_21-PM-07_02_15
Last ObjectModification: 2018_05_19-PM-04_44_04

Theory : general


Home Index