Nuprl Lemma : ot-less-trans_wf
ot-less-trans() ∈ Trans(WFO{i:l}();x,y.order-type-less() x y)
Proof
Definitions occuring in Statement : 
ot-less-trans: ot-less-trans()
, 
WFO: WFO{i:l}()
, 
order-type-less: order-type-less()
, 
trans: Trans(T;x,y.E[x; y])
, 
member: t ∈ T
, 
apply: f a
Definitions unfolded in proof : 
member: t ∈ T
, 
order-type-less-transitive-ext
Lemmas referenced : 
order-type-less-transitive-ext
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry
Latex:
ot-less-trans()  \mmember{}  Trans(WFO\{i:l\}();x,y.order-type-less()  x  y)
Date html generated:
2018_05_21-PM-07_02_15
Last ObjectModification:
2018_05_19-PM-04_44_04
Theory : general
Home
Index