Step
*
1
of Lemma
primality-test
1. b : ℕ
2. ∀b:ℕb. (prime(b)) supposing ((∀p:ℕ. (prime(p) 
⇒ ((p * p) ≤ b) 
⇒ (¬(p | b)))) and (2 ≤ b))
3. 2 ≤ b
4. ∀p:ℕ. (prime(p) 
⇒ ((p * p) ≤ b) 
⇒ (¬(p | b)))
⊢ prime(b)
BY
{ ((BLemma `atomic_imp_prime` THEN Auto) THEN D 0 THEN Auto) }
1
1. b : ℕ
2. ∀b:ℕb. (prime(b)) supposing ((∀p:ℕ. (prime(p) 
⇒ ((p * p) ≤ b) 
⇒ (¬(p | b)))) and (2 ≤ b))
3. 2 ≤ b
4. ∀p:ℕ. (prime(p) 
⇒ ((p * p) ≤ b) 
⇒ (¬(p | b)))
⊢ ¬(b ~ 1)
2
1. b : ℕ
2. ∀b:ℕb. (prime(b)) supposing ((∀p:ℕ. (prime(p) 
⇒ ((p * p) ≤ b) 
⇒ (¬(p | b)))) and (2 ≤ b))
3. 2 ≤ b
4. ∀p:ℕ. (prime(p) 
⇒ ((p * p) ≤ b) 
⇒ (¬(p | b)))
5. ¬(b ~ 1)
⊢ ¬reducible(b)
Latex:
Latex:
1.  b  :  \mBbbN{}
2.  \mforall{}b:\mBbbN{}b.  (prime(b))  supposing  ((\mforall{}p:\mBbbN{}.  (prime(p)  {}\mRightarrow{}  ((p  *  p)  \mleq{}  b)  {}\mRightarrow{}  (\mneg{}(p  |  b))))  and  (2  \mleq{}  b))
3.  2  \mleq{}  b
4.  \mforall{}p:\mBbbN{}.  (prime(p)  {}\mRightarrow{}  ((p  *  p)  \mleq{}  b)  {}\mRightarrow{}  (\mneg{}(p  |  b)))
\mvdash{}  prime(b)
By
Latex:
((BLemma  `atomic\_imp\_prime`  THEN  Auto)  THEN  D  0  THEN  Auto)
Home
Index