Step * 1 2 of Lemma primality-test


1. : ℕ
2. ∀b:ℕb. (prime(b)) supposing ((∀p:ℕ(prime(p)  ((p p) ≤ b)  (p b)))) and (2 ≤ b))
3. 2 ≤ b
4. ∀p:ℕ(prime(p)  ((p p) ≤ b)  (p b)))
5. ¬(b 1)
⊢ ¬reducible(b)
BY
((D THEN Auto) THEN Assert ⌜∃a,c:{2..b-}. (b (a c) ∈ ℤ)⌝⋅}

1
.....assertion..... 
1. : ℕ
2. ∀b:ℕb. (prime(b)) supposing ((∀p:ℕ(prime(p)  ((p p) ≤ b)  (p b)))) and (2 ≤ b))
3. 2 ≤ b
4. ∀p:ℕ(prime(p)  ((p p) ≤ b)  (p b)))
5. ¬(b 1)
6. reducible(b)
⊢ ∃a,c:{2..b-}. (b (a c) ∈ ℤ)

2
1. : ℕ
2. ∀b:ℕb. (prime(b)) supposing ((∀p:ℕ(prime(p)  ((p p) ≤ b)  (p b)))) and (2 ≤ b))
3. 2 ≤ b
4. ∀p:ℕ(prime(p)  ((p p) ≤ b)  (p b)))
5. ¬(b 1)
6. reducible(b)
7. ∃a,c:{2..b-}. (b (a c) ∈ ℤ)
⊢ False


Latex:


Latex:

1.  b  :  \mBbbN{}
2.  \mforall{}b:\mBbbN{}b.  (prime(b))  supposing  ((\mforall{}p:\mBbbN{}.  (prime(p)  {}\mRightarrow{}  ((p  *  p)  \mleq{}  b)  {}\mRightarrow{}  (\mneg{}(p  |  b))))  and  (2  \mleq{}  b))
3.  2  \mleq{}  b
4.  \mforall{}p:\mBbbN{}.  (prime(p)  {}\mRightarrow{}  ((p  *  p)  \mleq{}  b)  {}\mRightarrow{}  (\mneg{}(p  |  b)))
5.  \mneg{}(b  \msim{}  1)
\mvdash{}  \mneg{}reducible(b)


By


Latex:
((D  0  THEN  Auto)  THEN  Assert  \mkleeneopen{}\mexists{}a,c:\{2..b\msupminus{}\}.  (b  =  (a  *  c))\mkleeneclose{}\mcdot{})




Home Index