Step
*
1
1
2
1
2
of Lemma
prime-factors-unique
1. u : {m:ℕ| prime(m)}
2. v : {m:ℕ| prime(m)} List
3. ∀qs:{m:ℕ| prime(m)} List. ((reduce(λx,y. (x * y);1;v) = reduce(λx,y. (x * y);1;qs) ∈ ℤ)
⇒ permutation(ℤ;v;qs))
4. qs : {m:ℕ| prime(m)} List
5. (u * reduce(λx,y. (x * y);1;v)) = reduce(λx,y. (x * y);1;qs) ∈ ℤ
6. (u ∈ qs)
⊢ permutation(ℤ;[u / v];qs)
BY
{ Assert ⌜∃qs':{m:ℕ| prime(m)} List. permutation(ℤ;[u / qs'];qs)⌝⋅ }
1
.....assertion.....
1. u : {m:ℕ| prime(m)}
2. v : {m:ℕ| prime(m)} List
3. ∀qs:{m:ℕ| prime(m)} List. ((reduce(λx,y. (x * y);1;v) = reduce(λx,y. (x * y);1;qs) ∈ ℤ)
⇒ permutation(ℤ;v;qs))
4. qs : {m:ℕ| prime(m)} List
5. (u * reduce(λx,y. (x * y);1;v)) = reduce(λx,y. (x * y);1;qs) ∈ ℤ
6. (u ∈ qs)
⊢ ∃qs':{m:ℕ| prime(m)} List. permutation(ℤ;[u / qs'];qs)
2
1. u : {m:ℕ| prime(m)}
2. v : {m:ℕ| prime(m)} List
3. ∀qs:{m:ℕ| prime(m)} List. ((reduce(λx,y. (x * y);1;v) = reduce(λx,y. (x * y);1;qs) ∈ ℤ)
⇒ permutation(ℤ;v;qs))
4. qs : {m:ℕ| prime(m)} List
5. (u * reduce(λx,y. (x * y);1;v)) = reduce(λx,y. (x * y);1;qs) ∈ ℤ
6. (u ∈ qs)
7. ∃qs':{m:ℕ| prime(m)} List. permutation(ℤ;[u / qs'];qs)
⊢ permutation(ℤ;[u / v];qs)
Latex:
Latex:
1. u : \{m:\mBbbN{}| prime(m)\}
2. v : \{m:\mBbbN{}| prime(m)\} List
3. \mforall{}qs:\{m:\mBbbN{}| prime(m)\} List
((reduce(\mlambda{}x,y. (x * y);1;v) = reduce(\mlambda{}x,y. (x * y);1;qs)) {}\mRightarrow{} permutation(\mBbbZ{};v;qs))
4. qs : \{m:\mBbbN{}| prime(m)\} List
5. (u * reduce(\mlambda{}x,y. (x * y);1;v)) = reduce(\mlambda{}x,y. (x * y);1;qs)
6. (u \mmember{} qs)
\mvdash{} permutation(\mBbbZ{};[u / v];qs)
By
Latex:
Assert \mkleeneopen{}\mexists{}qs':\{m:\mBbbN{}| prime(m)\} List. permutation(\mBbbZ{};[u / qs'];qs)\mkleeneclose{}\mcdot{}
Home
Index