Step
*
1
1
1
1
of Lemma
rel-immediate-rel-plus
.....assertion..... 
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. f : T ⟶ ℕ
4. ∀x,y:T.  ((R x y) 
⇒ f x < f y)
5. ∀x,y:T.  Dec(∃z:T. ((R x z) ∧ (R z y)))
⊢ ∀d:ℕ. ∀x,y:T.  ((((f y) - f x) ≤ d) 
⇒ (x R y) 
⇒ (∃n:ℕ+. (R!^n x y)))
BY
{ xxx(CompleteInductionOnNat THEN Auto)xxx }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. f : T ⟶ ℕ
4. ∀x,y:T.  ((R x y) 
⇒ f x < f y)
5. ∀x,y:T.  Dec(∃z:T. ((R x z) ∧ (R z y)))
6. d : ℕ
7. ∀d:ℕd. ∀x,y:T.  ((((f y) - f x) ≤ d) 
⇒ (x R y) 
⇒ (∃n:ℕ+. (R!^n x y)))
8. x : T
9. y : T
10. ((f y) - f x) ≤ d
11. x R y
⊢ ∃n:ℕ+. (R!^n x y)
Latex:
Latex:
.....assertion..... 
1.  [T]  :  Type
2.  [R]  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
3.  f  :  T  {}\mrightarrow{}  \mBbbN{}
4.  \mforall{}x,y:T.    ((R  x  y)  {}\mRightarrow{}  f  x  <  f  y)
5.  \mforall{}x,y:T.    Dec(\mexists{}z:T.  ((R  x  z)  \mwedge{}  (R  z  y)))
\mvdash{}  \mforall{}d:\mBbbN{}.  \mforall{}x,y:T.    ((((f  y)  -  f  x)  \mleq{}  d)  {}\mRightarrow{}  (x  R  y)  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}\msupplus{}.  (rel\_exp(T;  R!;  n)  x  y)))
By
Latex:
xxx(CompleteInductionOnNat  THEN  Auto)xxx
Home
Index