Nuprl Lemma : rel-immediate-rel-plus

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (SWellFounded(R y)  (∀x,y:T.  Dec(∃z:T. ((R z) ∧ (R y))))  R+ => R!+)


Proof




Definitions occuring in Statement :  rel-immediate: R! strongwellfounded: SWellFounded(R[x; y]) rel_plus: R+ rel_implies: R1 => R2 decidable: Dec(P) uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] rel_plus: R+ rel_implies: R1 => R2 infix_ap: y all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) nat: rel_exp: R^n ge: i ≥  sq_type: SQType(T) uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q bfalse: ff subtract: m eq_int: (i =z j) less_than: a < b squash: T true: True cand: c∧ B rel-immediate: R!
Lemmas referenced :  nat_plus_subtype_nat nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf exists_wf nat_plus_wf rel_exp_wf all_wf decidable_wf strongwellfounded_wf int_seg_properties intformle_wf int_formula_prop_le_lemma int_seg_wf decidable__equal_int subtract_wf int_seg_subtype false_wf decidable__le itermSubtract_wf intformeq_wf int_term_value_subtract_lemma int_formula_prop_eq_lemma le_wf less_than_wf int_seg_subtype_nat rel-immediate_wf lelt_wf set_wf primrec-wf2 nat_wf nat_properties itermAdd_wf int_term_value_add_lemma eq_int_wf assert_wf bnot_wf not_wf equal-wf-T-base subtype_base_sq int_subtype_base bool_cases bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot infix_ap_wf rel_exp_add equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut hypothesis dependent_functionElimination hypothesisEquality applyEquality introduction extract_by_obid independent_functionElimination isectElimination setElimination rename natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll cumulativity functionExtensionality productEquality universeEquality because_Cache functionEquality addLevel equalityTransitivity equalitySymmetry applyLambdaEquality levelHypothesis hypothesis_subsumption dependent_set_memberEquality addEquality baseClosed instantiate impliesFunctionality hyp_replacement imageElimination imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (SWellFounded(R  x  y)  {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(\mexists{}z:T.  ((R  x  z)  \mwedge{}  (R  z  y))))  {}\mRightarrow{}  R\msupplus{}  =>  R!\msupplus{})



Date html generated: 2018_05_21-PM-07_42_32
Last ObjectModification: 2017_07_26-PM-05_20_16

Theory : general


Home Index