Step * 2 1 1 1 1 1 1 1 of Lemma retraction-fun-path-squash


1. Type
2. T ⟶ T
3. T ⟶ ℕ
4. ∀x:T. (↓((f x) x ∈ T) ∨ (f x) < x)
5. T
6. List
7. ∀x,y:T.  ↓(x y ∈ T) ∨ y < supposing y=f*(x) via v
8. T
9. T
10. u ∈ T
11. u ∈ supposing ¬0 < ||v||
12. 0 < ||v||
13. (f hd(v)) ∈ T
14. ¬(u hd(v) ∈ T)
15. hd(v)=f*(x) via v
16. (x hd(v) ∈ T) ∨ hd(v) < x
17. u < hd(v)
⊢ ↓(x u ∈ T) ∨ u < x
BY
(D THEN -2 THEN Auto) }


Latex:


Latex:

1.  T  :  Type
2.  f  :  T  {}\mrightarrow{}  T
3.  h  :  T  {}\mrightarrow{}  \mBbbN{}
4.  \mforall{}x:T.  (\mdownarrow{}((f  x)  =  x)  \mvee{}  h  (f  x)  <  h  x)
5.  u  :  T
6.  v  :  T  List
7.  \mforall{}x,y:T.    \mdownarrow{}(x  =  y)  \mvee{}  h  y  <  h  x  supposing  y=f*(x)  via  v
8.  x  :  T
9.  y  :  T
10.  y  =  u
11.  x  =  u  supposing  \mneg{}0  <  ||v||
12.  0  <  ||v||
13.  u  =  (f  hd(v))
14.  \mneg{}(u  =  hd(v))
15.  hd(v)=f*(x)  via  v
16.  (x  =  hd(v))  \mvee{}  h  hd(v)  <  h  x
17.  h  u  <  h  hd(v)
\mvdash{}  \mdownarrow{}(x  =  u)  \mvee{}  h  u  <  h  x


By


Latex:
(D  0  THEN  D  -2  THEN  Auto)




Home Index