Nuprl Lemma : retraction-fun-path-squash
∀[T:Type]
∀f:T ⟶ T. ∀h:T ⟶ ℕ.
((∀x:T. (↓((f x) = x ∈ T) ∨ h (f x) < h x))
⇒ (∀L:T List. ∀x,y:T. ↓(x = y ∈ T) ∨ h y < h x supposing y=f*(x) via L))
Proof
Definitions occuring in Statement :
fun-path: y=f*(x) via L
,
list: T List
,
nat: ℕ
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
squash: ↓T
,
implies: P
⇒ Q
,
or: P ∨ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
so_lambda: λ2x.t[x]
,
uimplies: b supposing a
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
squash: ↓T
,
nat: ℕ
,
or: P ∨ Q
,
fun-path: y=f*(x) via L
,
select: L[n]
,
nil: []
,
it: ⋅
,
so_lambda: λ2x y.t[x; y]
,
top: Top
,
so_apply: x[s1;s2]
,
subtract: n - m
,
and: P ∧ Q
,
less_than: a < b
,
less_than': less_than'(a;b)
,
false: False
,
uiff: uiff(P;Q)
,
guard: {T}
,
decidable: Dec(P)
,
not: ¬A
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
Lemmas referenced :
list_induction,
all_wf,
isect_wf,
fun-path_wf,
squash_wf,
or_wf,
equal_wf,
less_than_wf,
list_wf,
nil_wf,
cons_wf,
nat_wf,
length_of_nil_lemma,
stuck-spread,
base_wf,
fun-path-cons,
decidable__lt,
length_wf,
iff_weakening_equal,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformless_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_formula_prop_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
thin,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
sqequalRule,
lambdaEquality,
cumulativity,
because_Cache,
functionExtensionality,
applyEquality,
hypothesis,
independent_functionElimination,
imageElimination,
imageMemberEquality,
baseClosed,
rename,
dependent_functionElimination,
functionEquality,
isect_memberEquality,
equalityTransitivity,
equalitySymmetry,
setElimination,
universeEquality,
independent_isectElimination,
voidElimination,
voidEquality,
productElimination,
natural_numberEquality,
unionElimination,
inlFormation,
hyp_replacement,
Error :applyLambdaEquality,
inrFormation,
dependent_pairFormation,
int_eqEquality,
intEquality,
independent_pairFormation,
computeAll
Latex:
\mforall{}[T:Type]
\mforall{}f:T {}\mrightarrow{} T. \mforall{}h:T {}\mrightarrow{} \mBbbN{}.
((\mforall{}x:T. (\mdownarrow{}((f x) = x) \mvee{} h (f x) < h x))
{}\mRightarrow{} (\mforall{}L:T List. \mforall{}x,y:T. \mdownarrow{}(x = y) \mvee{} h y < h x supposing y=f*(x) via L))
Date html generated:
2016_10_25-AM-11_03_48
Last ObjectModification:
2016_07_12-AM-07_11_02
Theory : general
Home
Index