Nuprl Lemma : retraction-fun-path-squash

[T:Type]
  ∀f:T ⟶ T. ∀h:T ⟶ ℕ.
    ((∀x:T. (↓((f x) x ∈ T) ∨ (f x) < x))
     (∀L:T List. ∀x,y:T.  ↓(x y ∈ T) ∨ y < supposing y=f*(x) via L))


Proof




Definitions occuring in Statement :  fun-path: y=f*(x) via L list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] squash: T implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] uimplies: supposing a prop: subtype_rel: A ⊆B so_apply: x[s] squash: T nat: or: P ∨ Q fun-path: y=f*(x) via L select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] subtract: m and: P ∧ Q less_than: a < b less_than': less_than'(a;b) false: False uiff: uiff(P;Q) guard: {T} decidable: Dec(P) not: ¬A true: True iff: ⇐⇒ Q rev_implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  list_induction all_wf isect_wf fun-path_wf squash_wf or_wf equal_wf less_than_wf list_wf nil_wf cons_wf nat_wf length_of_nil_lemma stuck-spread base_wf fun-path-cons decidable__lt length_wf iff_weakening_equal satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity because_Cache functionExtensionality applyEquality hypothesis independent_functionElimination imageElimination imageMemberEquality baseClosed rename dependent_functionElimination functionEquality isect_memberEquality equalityTransitivity equalitySymmetry setElimination universeEquality independent_isectElimination voidElimination voidEquality productElimination natural_numberEquality unionElimination inlFormation hyp_replacement Error :applyLambdaEquality,  inrFormation dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}h:T  {}\mrightarrow{}  \mBbbN{}.
        ((\mforall{}x:T.  (\mdownarrow{}((f  x)  =  x)  \mvee{}  h  (f  x)  <  h  x))
        {}\mRightarrow{}  (\mforall{}L:T  List.  \mforall{}x,y:T.    \mdownarrow{}(x  =  y)  \mvee{}  h  y  <  h  x  supposing  y=f*(x)  via  L))



Date html generated: 2016_10_25-AM-11_03_48
Last ObjectModification: 2016_07_12-AM-07_11_02

Theory : general


Home Index