Nuprl Lemma : retraction-fun-path-squash
∀[T:Type]
  ∀f:T ⟶ T. ∀h:T ⟶ ℕ.
    ((∀x:T. (↓((f x) = x ∈ T) ∨ h (f x) < h x))
    ⇒ (∀L:T List. ∀x,y:T.  ↓(x = y ∈ T) ∨ h y < h x supposing y=f*(x) via L))
Proof
Definitions occuring in Statement : 
fun-path: y=f*(x) via L, 
list: T List, 
nat: ℕ, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
squash: ↓T, 
implies: P ⇒ Q, 
or: P ∨ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
squash: ↓T, 
nat: ℕ, 
or: P ∨ Q, 
fun-path: y=f*(x) via L, 
select: L[n], 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
subtract: n - m, 
and: P ∧ Q, 
less_than: a < b, 
less_than': less_than'(a;b), 
false: False, 
uiff: uiff(P;Q), 
guard: {T}, 
decidable: Dec(P), 
not: ¬A, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x]
Lemmas referenced : 
list_induction, 
all_wf, 
isect_wf, 
fun-path_wf, 
squash_wf, 
or_wf, 
equal_wf, 
less_than_wf, 
list_wf, 
nil_wf, 
cons_wf, 
nat_wf, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
fun-path-cons, 
decidable__lt, 
length_wf, 
iff_weakening_equal, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
because_Cache, 
functionExtensionality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
rename, 
dependent_functionElimination, 
functionEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
universeEquality, 
independent_isectElimination, 
voidElimination, 
voidEquality, 
productElimination, 
natural_numberEquality, 
unionElimination, 
inlFormation, 
hyp_replacement, 
Error :applyLambdaEquality, 
inrFormation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}h:T  {}\mrightarrow{}  \mBbbN{}.
        ((\mforall{}x:T.  (\mdownarrow{}((f  x)  =  x)  \mvee{}  h  (f  x)  <  h  x))
        {}\mRightarrow{}  (\mforall{}L:T  List.  \mforall{}x,y:T.    \mdownarrow{}(x  =  y)  \mvee{}  h  y  <  h  x  supposing  y=f*(x)  via  L))
Date html generated:
2016_10_25-AM-11_03_48
Last ObjectModification:
2016_07_12-AM-07_11_02
Theory : general
Home
Index