Step
*
1
of Lemma
sum-reindex
1. n : ℕ
2. a : ℕn ⟶ ℤ
3. m : ℕ
4. b : ℕm ⟶ ℤ
5. f : {i:ℕn| ¬(a[i] = 0 ∈ ℤ)}  ⟶ {j:ℕm| ¬(b[j] = 0 ∈ ℤ)} 
6. Bij({i:ℕn| ¬(a[i] = 0 ∈ ℤ)} {j:ℕm| ¬(b[j] = 0 ∈ ℤ)} f)
7. ∀i:{i:ℕn| ¬(a[i] = 0 ∈ ℤ)} . (a[i] = b[f i] ∈ ℤ)
⊢ bag-map(λi.a[i];[i∈upto(n)|¬b(a[i] =z 0)]) = bag-map(λj.b[j];[j∈upto(m)|¬b(b[j] =z 0)]) ∈ bag(ℤ)
BY
{ Subst ⌜[j∈upto(m)|¬b(b[j] =z 0)] = bag-map(f;[i∈upto(n)|¬b(a[i] =z 0)]) ∈ bag(ℕm)⌝ 0 ⋅ }
1
.....equality..... 
1. n : ℕ
2. a : ℕn ⟶ ℤ
3. m : ℕ
4. b : ℕm ⟶ ℤ
5. f : {i:ℕn| ¬(a[i] = 0 ∈ ℤ)}  ⟶ {j:ℕm| ¬(b[j] = 0 ∈ ℤ)} 
6. Bij({i:ℕn| ¬(a[i] = 0 ∈ ℤ)} {j:ℕm| ¬(b[j] = 0 ∈ ℤ)} f)
7. ∀i:{i:ℕn| ¬(a[i] = 0 ∈ ℤ)} . (a[i] = b[f i] ∈ ℤ)
⊢ [j∈upto(m)|¬b(b[j] =z 0)] = bag-map(f;[i∈upto(n)|¬b(a[i] =z 0)]) ∈ bag(ℕm)
2
1. n : ℕ
2. a : ℕn ⟶ ℤ
3. m : ℕ
4. b : ℕm ⟶ ℤ
5. f : {i:ℕn| ¬(a[i] = 0 ∈ ℤ)}  ⟶ {j:ℕm| ¬(b[j] = 0 ∈ ℤ)} 
6. Bij({i:ℕn| ¬(a[i] = 0 ∈ ℤ)} {j:ℕm| ¬(b[j] = 0 ∈ ℤ)} f)
7. ∀i:{i:ℕn| ¬(a[i] = 0 ∈ ℤ)} . (a[i] = b[f i] ∈ ℤ)
⊢ bag-map(λi.a[i];[i∈upto(n)|¬b(a[i] =z 0)]) = bag-map(λj.b[j];bag-map(f;[i∈upto(n)|¬b(a[i] =z 0)])) ∈ bag(ℤ)
3
.....wf..... 
1. n : ℕ
2. a : ℕn ⟶ ℤ
3. m : ℕ
4. b : ℕm ⟶ ℤ
5. f : {i:ℕn| ¬(a[i] = 0 ∈ ℤ)}  ⟶ {j:ℕm| ¬(b[j] = 0 ∈ ℤ)} 
6. Bij({i:ℕn| ¬(a[i] = 0 ∈ ℤ)} {j:ℕm| ¬(b[j] = 0 ∈ ℤ)} f)
7. ∀i:{i:ℕn| ¬(a[i] = 0 ∈ ℤ)} . (a[i] = b[f i] ∈ ℤ)
8. z : bag(ℕm)
⊢ bag-map(λi.a[i];[i∈upto(n)|¬b(a[i] =z 0)]) = bag-map(λj.b[j];z) ∈ bag(ℤ) ∈ ℙ
Latex:
Latex:
1.  n  :  \mBbbN{}
2.  a  :  \mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}
3.  m  :  \mBbbN{}
4.  b  :  \mBbbN{}m  {}\mrightarrow{}  \mBbbZ{}
5.  f  :  \{i:\mBbbN{}n|  \mneg{}(a[i]  =  0)\}    {}\mrightarrow{}  \{j:\mBbbN{}m|  \mneg{}(b[j]  =  0)\} 
6.  Bij(\{i:\mBbbN{}n|  \mneg{}(a[i]  =  0)\}  ;\{j:\mBbbN{}m|  \mneg{}(b[j]  =  0)\}  ;f)
7.  \mforall{}i:\{i:\mBbbN{}n|  \mneg{}(a[i]  =  0)\}  .  (a[i]  =  b[f  i])
\mvdash{}  bag-map(\mlambda{}i.a[i];[i\mmember{}upto(n)|\mneg{}\msubb{}(a[i]  =\msubz{}  0)])  =  bag-map(\mlambda{}j.b[j];[j\mmember{}upto(m)|\mneg{}\msubb{}(b[j]  =\msubz{}  0)])
By
Latex:
Subst  \mkleeneopen{}[j\mmember{}upto(m)|\mneg{}\msubb{}(b[j]  =\msubz{}  0)]  =  bag-map(f;[i\mmember{}upto(n)|\mneg{}\msubb{}(a[i]  =\msubz{}  0)])\mkleeneclose{}  0  \mcdot{}
Home
Index