Nuprl Lemma : sum-reindex
∀[n:ℕ]. ∀[a:ℕn ⟶ ℤ]. ∀[m:ℕ]. ∀[b:ℕm ⟶ ℤ].
  Σ(a[i] | i < n) = Σ(b[j] | j < m) ∈ ℤ 
  supposing ∃f:{i:ℕn| ¬(a[i] = 0 ∈ ℤ)}  ⟶ {j:ℕm| ¬(b[j] = 0 ∈ ℤ)} . (Bij({i:ℕn| ¬(a[i] = 0 ∈ ℤ)} {j:ℕm| ¬(b[j] = 0 ∈ ℤ\000C)} f) ∧ (∀i:{i:ℕn| ¬(a[i] = 0 ∈ ℤ)} . (a[i] = b[f i] ∈ ℤ)))
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k)
, 
biject: Bij(A;B;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
ge: i ≥ j 
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
bag-no-repeats: bag-no-repeats(T;bs)
, 
cand: A c∧ B
, 
squash: ↓T
, 
int_seg: {i..j-}
, 
istype: istype(T)
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
bag-member: x ↓∈ bs
, 
less_than: a < b
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
guard: {T}
, 
sq_type: SQType(T)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
surject: Surj(A;B;f)
, 
less_than': less_than'(a;b)
, 
compose: f o g
Lemmas referenced : 
sum-as-bag-accum, 
int_seg_wf, 
bag-accum_wf, 
assert_wf, 
bnot_wf, 
eq_int_wf, 
istype-assert, 
istype-int, 
bag-filter_wf, 
bag-map_wf, 
list-subtype-bag, 
nat_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
biject_wf, 
not_wf, 
bag-filter-map, 
upto_wf, 
subtype_rel_self, 
no_repeats_upto, 
equal_wf, 
bag_wf, 
no_repeats_wf, 
bag-no-repeats_wf, 
le_wf, 
lelt_wf, 
set_subtype_base, 
list_subtype_base, 
bag-extensionality-no-repeats, 
decidable__equal_int_seg, 
subtype_rel_bag, 
subtype_rel_dep_function, 
subtype_rel_sets_simple, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
assert_of_eq_int, 
bag-member_wf, 
bag-filter-no-repeats, 
bag-map-no-repeats, 
assert_elim, 
bfalse_wf, 
squash_wf, 
true_wf, 
istype-universe, 
bool_wf, 
eq_int_eq_true, 
iff_weakening_equal, 
btrue_neq_bfalse, 
subtype_base_sq, 
bag-filter-no-repeats2, 
subtype_rel_sets, 
bag-member-map, 
bag-member-filter, 
bag-member-filter-set, 
istype-less_than, 
istype-le, 
l_member_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
intformand_wf, 
decidable__lt, 
int_seg_properties, 
istype-false, 
int_seg_subtype_nat, 
nat_wf, 
subtype_rel_set, 
member_upto2, 
int_term_value_constant_lemma, 
itermConstant_wf, 
list_wf, 
bag-map-map, 
set_wf, 
equal-wf-T-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality_alt, 
applyEquality, 
universeIsType, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
inhabitedIsType, 
lambdaFormation_alt, 
closedConclusion, 
setEquality, 
intEquality, 
addEquality, 
setIsType, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
productIsType, 
functionIsType, 
baseClosed, 
sqequalBase, 
axiomEquality, 
isectIsTypeImplies, 
dependent_set_memberEquality, 
dependent_pairFormation, 
independent_pairFormation, 
productEquality, 
imageMemberEquality, 
baseApply, 
equalityIsType4, 
dependent_set_memberEquality_alt, 
imageElimination, 
instantiate, 
universeEquality, 
cumulativity, 
equalityIsType1, 
lambdaFormation, 
isect_memberEquality, 
voidEquality, 
lambdaEquality, 
functionExtensionality, 
functionEquality, 
impliesFunctionality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[m:\mBbbN{}].  \mforall{}[b:\mBbbN{}m  {}\mrightarrow{}  \mBbbZ{}].
    \mSigma{}(a[i]  |  i  <  n)  =  \mSigma{}(b[j]  |  j  <  m) 
    supposing  \mexists{}f:\{i:\mBbbN{}n|  \mneg{}(a[i]  =  0)\}    {}\mrightarrow{}  \{j:\mBbbN{}m|  \mneg{}(b[j]  =  0)\}  .  (Bij(\{i:\mBbbN{}n|  \mneg{}(a[i]  =  0)\}  ;\{j:\mBbbN{}m|  \mneg{}(b[j]\000C  =  0)\}  ;f)  \mwedge{}  (\mforall{}i:\{i:\mBbbN{}n|  \mneg{}(a[i]  =  0)\}  .  (a[i]  =  b[f  i])))
Date html generated:
2019_10_15-AM-11_33_28
Last ObjectModification:
2019_06_26-PM-04_41_32
Theory : general
Home
Index