Step
*
1
1
of Lemma
sum-reindex
.....equality.....
1. n : ℕ
2. a : ℕn ⟶ ℤ
3. m : ℕ
4. b : ℕm ⟶ ℤ
5. f : {i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ⟶ {j:ℕm| ¬(b[j] = 0 ∈ ℤ)}
6. Bij({i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ;{j:ℕm| ¬(b[j] = 0 ∈ ℤ)} ;f)
7. ∀i:{i:ℕn| ¬(a[i] = 0 ∈ ℤ)} . (a[i] = b[f i] ∈ ℤ)
⊢ [j∈upto(m)|¬b(b[j] =z 0)] = bag-map(f;[i∈upto(n)|¬b(a[i] =z 0)]) ∈ bag(ℕm)
BY
{ (GenConcl ⌜upto(m) = X ∈ {X:bag(ℕm)| bag-no-repeats(ℕm;X)} ⌝⋅ THENA Auto) }
1
.....wf.....
1. n : ℕ
2. a : ℕn ⟶ ℤ
3. m : ℕ
4. b : ℕm ⟶ ℤ
5. f : {i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ⟶ {j:ℕm| ¬(b[j] = 0 ∈ ℤ)}
6. Bij({i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ;{j:ℕm| ¬(b[j] = 0 ∈ ℤ)} ;f)
7. ∀i:{i:ℕn| ¬(a[i] = 0 ∈ ℤ)} . (a[i] = b[f i] ∈ ℤ)
⊢ upto(m) ∈ {X:bag(ℕm)| bag-no-repeats(ℕm;X)}
2
1. n : ℕ
2. a : ℕn ⟶ ℤ
3. m : ℕ
4. b : ℕm ⟶ ℤ
5. f : {i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ⟶ {j:ℕm| ¬(b[j] = 0 ∈ ℤ)}
6. Bij({i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ;{j:ℕm| ¬(b[j] = 0 ∈ ℤ)} ;f)
7. ∀i:{i:ℕn| ¬(a[i] = 0 ∈ ℤ)} . (a[i] = b[f i] ∈ ℤ)
8. X : {X:bag(ℕm)| bag-no-repeats(ℕm;X)}
9. upto(m) = X ∈ {X:bag(ℕm)| bag-no-repeats(ℕm;X)}
⊢ [j∈X|¬b(b[j] =z 0)] = bag-map(f;[i∈upto(n)|¬b(a[i] =z 0)]) ∈ bag(ℕm)
Latex:
Latex:
.....equality.....
1. n : \mBbbN{}
2. a : \mBbbN{}n {}\mrightarrow{} \mBbbZ{}
3. m : \mBbbN{}
4. b : \mBbbN{}m {}\mrightarrow{} \mBbbZ{}
5. f : \{i:\mBbbN{}n| \mneg{}(a[i] = 0)\} {}\mrightarrow{} \{j:\mBbbN{}m| \mneg{}(b[j] = 0)\}
6. Bij(\{i:\mBbbN{}n| \mneg{}(a[i] = 0)\} ;\{j:\mBbbN{}m| \mneg{}(b[j] = 0)\} ;f)
7. \mforall{}i:\{i:\mBbbN{}n| \mneg{}(a[i] = 0)\} . (a[i] = b[f i])
\mvdash{} [j\mmember{}upto(m)|\mneg{}\msubb{}(b[j] =\msubz{} 0)] = bag-map(f;[i\mmember{}upto(n)|\mneg{}\msubb{}(a[i] =\msubz{} 0)])
By
Latex:
(GenConcl \mkleeneopen{}upto(m) = X\mkleeneclose{}\mcdot{} THENA Auto)
Home
Index