Nuprl Lemma : test-evd-middle
∀[P,A:ℙ]. (((P ∨ (P
⇒ A))
⇒ A)
⇒ A)
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
implies: P
⇒ Q
,
or: P ∨ Q
Definitions unfolded in proof :
member: t ∈ T
,
implies: P
⇒ Q
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
guard: {T}
,
or: P ∨ Q
Lemmas referenced :
or_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
functionEquality,
hypothesisEquality,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
isect_memberFormation,
lambdaFormation,
rename,
independent_functionElimination,
sqequalRule,
inrFormation,
inlFormation,
universeEquality
Latex:
\mforall{}[P,A:\mBbbP{}]. (((P \mvee{} (P {}\mRightarrow{} A)) {}\mRightarrow{} A) {}\mRightarrow{} A)
Date html generated:
2016_05_15-PM-03_18_58
Last ObjectModification:
2015_12_27-PM-01_03_27
Theory : general
Home
Index